List of Johnson solids
{{Short description|none}}
{{Featured list}}
{{pp-sock|small=yes}}
In geometry, a convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid.{{Cite book |last1=Araki |first1=Yoshiaki |last2=Horiyama |first2=Takashi |last3=Uehara |first3=Ryuhei |chapter=Common Unfolding of Regular Tetrahedron and Johnson-Zalgaller Solid |series=Lecture Notes in Computer Science |date=2015 |volume=8973 |editor-last=Rahman |editor-first=M. Sohel |editor2-last=Tomita |editor2-first=Etsuji |title=WALCOM: Algorithms and Computation |chapter-url=https://link.springer.com/chapter/10.1007/978-3-319-15612-5_26 |language=en |location=Cham |publisher=Springer International Publishing |pages=294–305 |doi=10.1007/978-3-319-15612-5_26 |isbn=978-3-319-15612-5}} Some authors exclude uniform polyhedra (in which all vertices are symmetric to each other) from the definition; uniform polyhedra include Platonic and Archimedean solids as well as prisms and antiprisms.{{multiref
|{{harvp|Diudea|2018|p=[https://books.google.com/books?id=p_06DwAAQBAJ&pg=PA39 39]}}
|{{harvp|Todesco|2020|p=[https://books.google.com/books?id=wtIBEAAAQBAJ&pg=PA282 282]}}
|{{harvp|Williams|Monteleone|2021|p=[https://books.google.com/books?id=w5RBEAAAQBAJ&pg=PA23 23]}}
}}
The Johnson solids are named after American mathematician Norman Johnson (1930–2017), who published a list of 92 non-uniform Johnson polyhedra in 1966. His conjecture that the list was complete and no other examples existed was proven by Russian-Israeli mathematician Victor Zalgaller (1920–2020) in 1969.{{multiref
|{{harvp|Johnson|1966}}
|{{harvp|Zalgaller|1969}}
}}
Seventeen Johnson solids may be categorized as elementary polyhedra, meaning they cannot be separated by a plane to create two small convex polyhedra with regular faces. The first six Johnson solids satisfy this criterion: the equilateral square pyramid, pentagonal pyramid, triangular cupola, square cupola, pentagonal cupola, and pentagonal rotunda. The criterion is also satisfied by eleven other Johnson solids, specifically the tridiminished icosahedron, parabidiminished rhombicosidodecahedron, tridiminished rhombicosidodecahedron, snub disphenoid, snub square antiprism, sphenocorona, sphenomegacorona, hebesphenomegacorona, disphenocingulum, bilunabirotunda, and triangular hebesphenorotunda.{{multiref
|{{harvp|Cromwell|1997|p=[https://archive.org/details/polyhedra0000crom/page/87/mode/1up 86–87]|loc=See the figure on p.[https://archive.org/details/polyhedra0000crom/page/89/mode/1up 89]}}
|{{harvp|Johnson|1966}}
}} The rest of the Johnson solids are not elementary, and they are constructed using the first six Johnson solids together with Platonic and Archimedean solids in various processes. Augmentation involves attaching the Johnson solids onto one or more faces of polyhedra, while elongation or gyroelongation involve joining them onto the bases of a prism or antiprism, respectively. Some others are constructed by diminishment, the removal of one of the first six solids from one or more of a polyhedron's faces.{{multiref
|{{harvp|Rajwade|2001|p=[https://books.google.com/books?id=afJdDwAAQBAJ&pg=PA84 84–88]}}
|{{harvp|Slobodan|Obradović|Ðukanović|2015}}
|{{harvp|Berman|1971|p=350}}
}}
The following table contains the 92 Johnson solids, with edge length . The table includes the solid's enumeration (denoted as ).{{sfnp|Uehara|2020|p=[https://books.google.com/books?id=51juDwAAQBAJ&pg=PA62 62]}} It also includes the number of vertices, edges, and faces of each solid, as well as its symmetry group, surface area , and volume . Every polyhedron has its own characteristics, including symmetry and measurement. An object is said to have symmetry if there is a transformation that maps it to itself. All of those transformations may be composed in a group, alongside the group's number of elements, known as the order. In two-dimensional space, these transformations include rotating around the center of a polygon and reflecting an object around the perpendicular bisector of a polygon. A polygon that is rotated symmetrically by is denoted by , a cyclic group of order ; combining this with the reflection symmetry results in the symmetry of dihedral group of order .{{multiref
|{{harvp|Powell|2010|p=[https://books.google.com/books?id=ojq5BQAAQBAJ&pg=PA27 27]}}
|{{harvp|Solomon|2003|p=[https://books.google.com/books?id=ouvZKQiykf4C&pg=PA40 40]}}
}} In three-dimensional symmetry point groups, the transformations preserving a polyhedron's symmetry include the rotation around the line passing through the base center, known as the axis of symmetry, and the reflection relative to perpendicular planes passing through the bisector of a base, which is known as the pyramidal symmetry of order . The transformation that preserves a polyhedron's symmetry by reflecting it across a horizontal plane is known as the prismatic symmetry of order . The antiprismatic symmetry of order preserves the symmetry by rotating its half bottom and reflection across the horizontal plane.{{sfnp|Flusser|Suk|Zitofa|2017|p=[https://books.google.com/books?id=jwKLDQAAQBAJ&pg=PA126 126]}} The symmetry group of order preserves the symmetry by rotation around the axis of symmetry and reflection on the horizontal plane; the specific case preserving the symmetry by one full rotation is of order 2, often denoted as .{{multiref
|{{harvp|Flusser|Suk|Zitofa|2017|p=[https://books.google.com/books?id=jwKLDQAAQBAJ&pg=PA126 126]}}
|{{harvp|Hergert|Geilhufe|2018|p=[https://books.google.com/books?id=p6hWDwAAQBAJ&pg=PA56 56]}}
}} The mensuration of polyhedra includes the surface area and volume. An area is a two-dimensional measurement calculated by the product of length and width; for a polyhedron, the surface area is the sum of the areas of all of its faces.{{sfnp|Walsh|2014|p=[https://books.google.com/books?id=ZhDdAwAAQBAJ&pg=PA284 284]}} A volume is a measurement of a region in three-dimensional space.{{sfnp|Parker|1997|p=[https://archive.org/details/mcgrawhilldictio00park_0/page/264 264]}} The volume of a polyhedron may be ascertained in different ways: either through its base and height (like for pyramids and prisms), by slicing it off into pieces and summing their individual volumes, or by finding the root of a polynomial representing the polyhedron.{{multiref
|{{harvp|Cromwell|1997|p=[https://books.google.com/books?id=OJowej1QWpoC&&pg=PA36 36]}}
|{{harvp|Berman|1971}}
|{{harvp|Timofeenko|2009}}
}}
{{mw-datatable}}{{sticky-header}}{{sort-under}}
class="wikitable sortable mw-datatable sticky-header-multi sort-under plainrowheaders"
|+ The 92 Johnson solids !scope=col | !scope=col | Solid name !scope=col | Image !scope=col | Vertices !scope=col | Edges !scope=col | Faces !scope=col | Symmetry group and its order{{sfnp|Johnson|1966}} !scope=col | Surface area and volume{{sfnp|Berman|1971}} |
scope=row | 1
| 100px | 5 | 8 | 5 | of order 8 | A &= \left(1 + \sqrt{3}\right)a^2 \\ &\approx 2.7321a^2 \\ V &= \frac{\sqrt{2}}{6}a^3 \\ &\approx 0.2357a^3 \end{align} |
---|
scope=row | 2
| 100px | 6 | 10 | 6 | of order 10 | A &= \frac{a^2}{2}\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)} \\ &\approx 3.8855a^2 \\ V &= \left(\frac{5 + \sqrt{5}}{24}\right)a^3 \\ &\approx 0.3015a^3 \end{align} |
scope=row | 3
| 100px | 9 | 15 | 8 | of order 6 | A &= \left(3+\frac{5\sqrt{3}}{2} \right) a^2 \\ &\approx 7.3301a^2 \\ V &= \left(\frac{5}{3\sqrt{2}}\right) a^3 \\ &\approx 1.1785a^3 \end{align} |
scope=row | 4
| 100px | 12 | 20 | 10 | of order 8 | A &= \left(7+2\sqrt{2}+\sqrt{3}\right)a^2 \\ &\approx 11.5605a^2 \\ V &= \left(1+\frac{2\sqrt{2}}{3}\right)a^3 \\ &\approx 1.9428a^3 \end{align} |
scope=row | 5
| 100px | 15 | 25 | 12 | of order 10 | A &= \left(\frac{1}{4}\left(20+5\sqrt{3}+\sqrt{5\left(145+62\sqrt{5}\right)}\right)\right)a^2 \\ &\approx 16.5798a^2 \\ V &= \left(\frac{1}{6}\left(5+4\sqrt{5}\right)\right)a^3 \\ &\approx 2.3241a^3 \end{align} |
scope=row | 6
| 100px | 20 | 35 | 17 | of order 10 | A &= \left(\frac{1}{2}\left(5\sqrt{3}+\sqrt{10\left(65+29\sqrt{5}\right)}\right)\right)a^2 \\ &\approx 22.3472a^2 \\ V &= \left(\frac{1}{12}\left(45+17\sqrt{5}\right)\right)a^3 \\ &\approx 6.9178a^3 \end{align} |
scope=row | 7
| Elongated triangular pyramid | 100px | 7 | 12 | 7 | of order 6 | A &= \left(3+\sqrt{3}\right)a^2 \\ &\approx 4.7321a^2 \\ V &= \left(\frac{1}{12}\left(\sqrt{2}+3\sqrt{3}\right)\right)a^3 \\ &\approx 0.5509a^3 \end{align} |
scope=row | 8
| 100px | 9 | 16 | 9 | of order 8 | A &= \left( 5 + \sqrt{3} \right)a^2 \\ &\approx 6.7321a^2 \\ V &= \left( 1 + \frac{\sqrt{2}}{6}\right)a^3 \\ &\approx 1.2357a^3 \end{align} |
scope=row | 9
| Elongated pentagonal pyramid | 100px | 11 | 20 | 11 | of order 10 | A &= \frac{20 + 5\sqrt{3} + \sqrt{25 + 10\sqrt{5}}}{4}a^2 \\ &\approx 8.8855a^2 \\ V &= \left(\frac{5 + \sqrt{5} + 6\sqrt{25 + 10\sqrt{5}}}{24} \right)a^3 \\ &\approx 2.022a^3 \end{align} |
scope=row | 10
| Gyroelongated square pyramid | 100px | 9 | 20 | 13 | of order 8 | A &= (1 + 3\sqrt{3})a^2 \\ &\approx 6.1962a^2 \\ V &= \frac{1}{6} \left(\sqrt{2}+2 \sqrt{4+3 \sqrt{2}}\right)a^3 \\ &\approx 1.1927a^3 \end{align} |
scope=row | 11
| Gyroelongated pentagonal pyramid | 100px | 11 | 25 | 16 | of order 10 | A &= \frac{1}{4} \left(15 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 8.2157a^2 \\ V &= \frac{1}{24} \left(25+9 \sqrt{5}\right)a^3 \\ &\approx 1.8802a^3 \end{align} |
scope=row | 12
| 100px | 5 | 9 | 6 | of order 12 | A &= \frac{3\sqrt{3}}{2}a^2 \\ &\approx 2.5981a^2 \\ V &= \frac{\sqrt{2}}{6}a^3 \\ &\approx 0.2358a^3 \end{align} |
scope=row | 13
| 100px | 7 | 15 | 10 | of order 20 | A &= \frac{5 \sqrt{3}}{2}a^2 \\ &\approx 4.3301a^2 \\ V &= \frac{1}{12} \left(5+\sqrt{5}\right)a^3 \\ &\approx 0.603a^3 \end{align} |
scope=row | 14
| Elongated triangular bipyramid | 100px | 8 | 15 | 9 | of order 12 | A &= \frac{3}{2} \left(2+\sqrt{3}\right)a^2 \\ &\approx 5.5981a^2 \\ V &= \frac{1}{12} \left(2 \sqrt{2}+3 \sqrt{3}\right)a^3 \\ &\approx 0.6687a^3 \end{align} |
scope=row | 15
| 100px | 10 | 20 | 12 | of order 16 | A &= 2 \left(2+\sqrt{3}\right)a^2 \\ &\approx 7.4641a^2 \\ V &= \frac{1}{3} \left(3+\sqrt{2}\right)a^3 \\ &\approx 1.4714a^3 \end{align} |
scope=row | 16
| Elongated pentagonal bipyramid | 100px | 12 | 25 | 15 | of order 20 | A &= \frac{5}{2} \left(2+\sqrt{3}\right)a^2 \\ &\approx 9.3301a^2 \\ V &= \frac{1}{12} \left(5+\sqrt{5}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^3 \\ &\approx 2.3235a^3 \end{align} |
scope=row | 17
| Gyroelongated square bipyramid | 100px | 10 | 24 | 16 | of order 16 | A &= 4 \sqrt{3}a^2 \\ &\approx 6.9282a^2 \\ V &= \frac{1}{3} \left(\sqrt{2} + \sqrt{4 + 3 \sqrt{2}}\right)a^3 \\ &\approx 1.4284a^3 \end{align} |
scope=row | 18
| 100px | 15 | 27 | 14 | of order 6 | A &= \frac{1}{2} \left(18+5 \sqrt{3}\right)a^2 \\ &\approx 13.3301a^2 \\ V &= \frac{1}{6} \left(5\sqrt{2}+9\sqrt{3}\right)a^3 \\ &\approx 3.7766a^3 \end{align} |
scope=row | 19
| 100px | 20 | 36 | 18 | of order 8 | A &= (15+2 \sqrt{2}+\sqrt{3})a^2\\ &\approx 19.5605a^2 \\ V &= \left(3+\frac{8 \sqrt{2}}{3}\right)a^3 \\ &\approx 6.7712a^3 \end{align} |
scope=row | 20
| 100px | 25 | 45 | 22 | of order 10 | A &= \frac{1}{4} \left(60+5 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 26.5798a^2 \\ V &= \frac{1}{6} \left(5+4 \sqrt{5}+15 \sqrt{5+2 \sqrt{5}}\right)a^3 \\ &\approx 10.0183a^3 \end{align} |
scope=row | 21
| Elongated pentagonal rotunda | 100px | 30 | 55 | 27 | of order 10 | A &= \frac{1}{2}a^2 \left(20+5 \sqrt{3}+5 \sqrt{5+2 \sqrt{5}}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right) \\ &\approx 32.3472a^2 \\ V &= \frac{1}{12}a^3 \left(45+17 \sqrt{5}+30 \sqrt{5+2 \sqrt{5}}\right) \\ &\approx 14.612a^3 \end{align} |
scope=row | 22
| Gyroelongated triangular cupola | 100px | 15 | 33 | 20 | of order 6 | A &= \frac{1}{2} \left(6+11 \sqrt{3}\right)a^2 \\ &\approx 12.5263a^2 \\ V &= \frac{1}{3} \sqrt{\frac{61}{2}+18 \sqrt{3}+30 \sqrt{1+\sqrt{3}}}a^3 \\ &\approx 3.5161a^3 \end{align} |
scope=row | 23
| 100px | 20 | 44 | 26 | of order 8 | A &= (7+2 \sqrt{2}+5 \sqrt{3})a^2 \\ &\approx 18.4887a^2 \\ V &= \left(1+\frac{2}{3}\sqrt{2} + \frac{2}{3}\sqrt{4+2\sqrt{2}+2\sqrt{146+103\sqrt{2}}}\right)a^3 \\ &\approx 6.2108a^3 \end{align} |
scope=row | 24
| Gyroelongated pentagonal cupola | 100px | 25 | 55 | 32 | of order 10 | A &= \frac{1}{4} \left(20+25 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 25.2400a^2 \\ V &= \left(\frac{5}{6}+\frac{2}{3}\sqrt{5} + \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 9.0733a^3 \end{align} |
scope=row | 25
| Gyroelongated pentagonal rotunda | 100px | 30 | 65 | 37 | of order 10 | A &= \frac{1}{2}\left( 15\sqrt{3}+\left(5+3\sqrt{5}\right)\sqrt{5+2\sqrt{5}}\right)a^2 \\ &\approx 31.0075a^2 \\ V &= \left(\frac{45}{12}+\frac{17}{12}\sqrt{5} + \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 13.6671a^3 \end{align} |
scope=row | 26
| 100px | 8 | 14 | 8 | of order 8 | A &= \left(4+\sqrt{3}\right)a^2 \\ &\approx 5.7321a^2 \\ V &= \left(\frac{\sqrt{3}}{2}\right)a^3 \\ &\approx 0.866a^3 \end{align} |
scope=row | 27
| 100px | 12 | 24 | 14 | of order 12 | A &= 2\left(3+\sqrt{3}\right)a^2 \\ &\approx 9.4641a^2 \\ V &= \frac{5\sqrt{2}}{3}a^3 \\ &\approx 2.357a^3 \end{align} |
scope=row | 28
| 100px | 16 | 32 | 18 | of order 16 | A &= 2(5 + \sqrt{3})a^2 \\ &\approx 13.4641a^2 \\ V &= \left(2 + \frac{4\sqrt{2}}{3}\right)a^3 \\ &\approx 3.8856a^3 \end{align} |
scope=row | 29
| 100px | 16 | 32 | 18 | of order 16 | A &= 2(5 + \sqrt{3})a^2 \\ &\approx 13.4641a^2 \\ V &= \left(2 + \frac{4\sqrt{2}}{3}\right)a^3 \\ &\approx 3.8856a^3 \end{align} |
scope=row | 30
| 100px | 20 | 40 | 22 | of order 20 | A &= \left(10+\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 17.7711a^2 \\ V &= \frac{1}{3}\left(5+4\sqrt{5}\right)a^3 \\ &\approx 4.6481a^3 \end{align} |
scope=row | 31
| 100px | 20 | 40 | 22 | of order 20 | A &= \left(10+\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 17.7711a^2 \\ V &= \frac{1}{3}\left(5+4\sqrt{5}\right)a^3 \\ &\approx 4.6481a^3 \end{align} |
scope=row | 32
| Pentagonal orthocupolarotunda | 100px | 25 | 50 | 27 | of order 10 | A &= \left(5+\frac{1}{4}\sqrt{1900+490\sqrt{5}+210\sqrt{75+30\sqrt{5}}}\right)a^2 \\ &\approx 23.5385a^2 \\ V &= \frac{5}{12}\left(11+5\sqrt{5}\right)a^3 \\ &\approx 9.2418a^3 \end{align} |
scope=row | 33
| Pentagonal gyrocupolarotunda | 100px | 25 | 50 | 27 | of order 10 | A &= \left(5+\frac{15}{4}\sqrt{3}+\frac{7}{4}\sqrt{25+10\sqrt{5}}\right)a^2 \\ &\approx 23.5385a^2 \\ V &= \frac{5}{12}\left(11+5\sqrt{5}\right)a^3 \\ &\approx 9.2418a^3 \end{align} |
scope=row | 34
| 100px | 30 | 60 | 32 | of order 20 | A &= \left((5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 29.306a^2 \\ V &= \frac{1}{6}(45 + 17\sqrt{5})a^3 \\ &\approx 13.8355a^3 \end{align} |
scope=row | 35
| Elongated triangular orthobicupola | 100px | 18 | 36 | 20 | of order 12 | A &= 2(6 + \sqrt{3})a^2 \\ &\approx 15.4641a^2 \\ V &= \left(\frac{5 \sqrt{2}}{3} + \frac{3 \sqrt{3}}{2}\right)a^3 \\ &\approx 4.9551a^3 \end{align} |
scope=row | 36
| Elongated triangular gyrobicupola | 100px | 18 | 36 | 20 | of order 12 | A &= 2(6 + \sqrt{3})a^2 \\ &\approx 15.4641a^2 \\ V &= \left(\frac{5 \sqrt{2}}{3} + \frac{3 \sqrt{3}}{2}\right)a^3 \\ &\approx 4.9551a^3 \end{align} |
scope=row | 37
| Elongated square gyrobicupola | 100px | 24 | 48 | 26 | of order 16 | A &= 2(9 + \sqrt{3})a^2 \\ &\approx 21.4641a^2 \\ V &= \left(4 + \frac{10\sqrt{2}}{3}\right)a^3 \\ &\approx 8.714a^3 \end{align} |
scope=row | 38
| Elongated pentagonal orthobicupola | 100px | 30 | 60 | 32 | of order 20 | A &= \left(20+\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 27.7711a^2 \\ V &= \frac{1}{6}\left(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 12.3423a^3 \end{align} |
scope=row | 39
| Elongated pentagonal gyrobicupola | 100px | 30 | 60 | 32 | of order 20 | A &= \left(20+\sqrt{\frac{5}{2}\left(10+\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 27.7711a^2 \\ V &= \frac{1}{6}\left(10+8\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 12.3423a^3 \end{align} |
scope=row | 40
| Elongated pentagonal orthocupolarotunda | 100px | 35 | 70 | 37 | of order 10 | A &= \frac{1}{4}\left(60+\sqrt{10\left(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 33.5385a^2 \\ V &= \frac{5}{12}\left(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 16.936a^3 \end{align} |
scope=row | 41
| Elongated pentagonal gyrocupolarotunda | 100px | 35 | 70 | 37 | of order 10 | A &= \frac{1}{4}\left(60+\sqrt{10\left(190+49\sqrt{5}+21\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 33.5385a^2 \\ V &= \frac{5}{12}\left(11+5\sqrt{5}+6\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 16.936a^3 \end{align} |
scope=row | 42
| Elongated pentagonal orthobirotunda | 100px | 40 | 80 | 42 | of order 20 | A &= \left(10+\sqrt{30\left(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 39.306a^2 \\ V &= \frac{1}{6}\left(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 21.5297a^3 \end{align} |
scope=row | 43
| Elongated pentagonal gyrobirotunda | 100px | 40 | 80 | 42 | of order 20 | A &= \left(10+\sqrt{30\left(10+3\sqrt{5}+\sqrt{75+30\sqrt{5}}\right)}\right)a^2 \\ &\approx 39.306a^2 \\ V &= \frac{1}{6}\left(45+17\sqrt{5}+15\sqrt{5+2\sqrt{5}}\right)a^3 \\ &\approx 21.5297a^3 \end{align} |
scope=row | 44
| Gyroelongated triangular bicupola | 100px | 18 | 42 | 26 | of order 6 | A &= \left(6+5\sqrt{3}\right)a^2 \\ &\approx 14.6603a^2 \\ V &= \sqrt{2} \left(\frac{5}{3}+\sqrt{1+\sqrt{3}}\right) a^3 \\ &\approx 4.6946a^3 \end{align} |
scope=row | 45
| Gyroelongated square bicupola | 100px | 24 | 56 | 34 | of order 8 | A &= \left(10+6\sqrt{3}\right) a^2 \\ &\approx 20.3923a^2 \\ V &= \left(2+\frac{4}{3}\sqrt{2} + \frac{2}{3}\sqrt{4+2\sqrt{2}+2\sqrt{146+103\sqrt{2}}}\right) a^3 \\ &\approx 8.1536a^3 \end{align} |
scope=row | 46
| Gyroelongated pentagonal bicupola | 100px | 30 | 70 | 42 | of order 10 | A &= \frac{1}{2}\left(20+15\sqrt{3}+\sqrt{25+10\sqrt{5}}\right)a^2 \\ &\approx 26.4313a^2 \\ V &= \left(\frac{5}{3}+\frac{4}{3}\sqrt{5} + \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 11.3974a^3 \end{align} |
scope=row | 47
| Gyroelongated pentagonal cupolarotunda | 100px | 35 | 80 | 47 | of order 5 | A &= \frac{1}{4}\left(20+35\sqrt{3}+7\sqrt{25+10\sqrt{5}}\right)a^2 \\ &\approx 32.1988a^2 \\ V &= \left(\frac{55}{12}+\frac{25}{12}\sqrt{5}+ \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 15.9911a^3 \end{align} |
scope=row | 48
| Gyroelongated pentagonal birotunda | 100px | 40 | 90 | 52 | of order 10 | A &= \left(10\sqrt{3} + 3\sqrt{25+10\sqrt{5}}\right) a^2 \\ &\approx 37.9662a^2 \\ V &= \left(\frac{45}{6}+\frac{17}{6}\sqrt{5} + \frac{5}{6}\sqrt{2\sqrt{650+290\sqrt{5}}-2\sqrt{5}-2}\right) a^3 \\ &\approx 20.5848a^3 \end{align} |
scope=row | 49
| 100px | 7 | 13 | 8 | of order 4 | A &= \frac{1}{2}(4 + 3\sqrt{3})a^2 \\ &\approx 4.5981a^2 \\ V &= \frac{1}{12}(2\sqrt{2} + 3\sqrt{3})a^3 \\ &\approx 0.6687a^3 \end{align} |
scope=row | 50
| Biaugmented triangular prism | 100px | 8 | 17 | 11 | of order 4 | A &= \frac{1}{2}(2 + 5\sqrt{3})a^2 \\ &\approx 5.3301a^2 \\ V &= \sqrt{\frac{59}{144} + \frac{1}{\sqrt{6}}}a^3 \\ &\approx 0.9044a^3 \end{align} |
scope=row | 51
| Triaugmented triangular prism | 100px | 9 | 21 | 14 | of order 12 | A &= \frac{7\sqrt{3}}{2}a^2 \\ &\approx 6.0622a^2 \\ V &= \frac{2\sqrt{2}+\sqrt{3}}{4}a^3 \\ &\approx 1.1401a^3 \end{align} |
scope=row | 52
| 100px | 11 | 19 | 10 | of order 4 | A &= \frac{1}{2} \left(8+2 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 9.173a^2 \\ V &= \frac{1}{12} \sqrt{233+90 \sqrt{5}+12 \sqrt{50+20 \sqrt{5}}}a^3 \\ &\approx 1.9562a^3 \end{align} |
scope=row | 53
| Biaugmented pentagonal prism | 100px | 12 | 23 | 13 | of order 4 | A &= \frac{1}{2}a^2 \left(6+4 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right) \\ &\approx 9.9051a^2 \\ V &= \frac{1}{12}a^3 \sqrt{257+90 \sqrt{5}+24 \sqrt{50+20 \sqrt{5}}} \\ &\approx 2.1919a^3 \end{align} |
scope=row | 54
| 100px | 13 | 22 | 11 | of order 4 | A &= (5+4 \sqrt{3})a^2 \\ &\approx 11.9282a^2 \\ V &= \frac{1}{6} \left(\sqrt{2}+9 \sqrt{3}\right)a^3 \\ &\approx 2.8338a^3 \end{align} |
scope=row | 55
| Parabiaugmented hexagonal prism | 100px | 14 | 26 | 14 | of order 8 | A &= (4+5 \sqrt{3})a^2 \\ &\approx 12.6603a^2 \\ V &= \frac{1}{6} \left(2 \sqrt{2}+9 \sqrt{3}\right)a^3 \\ &\approx 3.0695a^3 \end{align} |
scope=row | 56
| Metabiaugmented hexagonal prism | 100px | 14 | 26 | 14 | of order 4 | A &= (4+5 \sqrt{3})a^2 \\ &\approx 12.6603a^2 \\ V &= \frac{1}{6} \left(2 \sqrt{2}+9 \sqrt{3}\right)a^3 \\ &\approx 3.0695a^3 \end{align} |
scope=row | 57
| Triaugmented hexagonal prism | 100px | 15 | 30 | 17 | of order 12 | A &= 3 \left(1+2 \sqrt{3}\right)a^2 \\ &\approx 13.3923a^2 \\ V &= \left(\frac{1}{\sqrt{2}}+\frac{3 \sqrt{3}}{2}\right)a^3 \\ &\approx 3.3052a^3 \end{align} |
scope=row | 58
| 100px | 21 | 35 | 16 | of order 10 | A &= \frac{1}{4} \left(5 \sqrt{3}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 21.0903a^2 \\ V &= \frac{1}{24} \left(95+43 \sqrt{5}\right)a^3 \\ &\approx 7.9646a^3 \end{align} |
scope=row | 59
| Parabiaugmented dodecahedron | 100px | 22 | 40 | 20 | of order 20 | A &= \frac{5}{2} \left(\sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 21.5349a^2 \\ V &= \frac{1}{6} \left(25+11 \sqrt{5}\right)a^3 \\ &\approx 8.2661a^3 \end{align} |
scope=row | 60
| Metabiaugmented dodecahedron | 100px | 22 | 40 | 20 | of order 4 | A &= \frac{5}{2} \left(\sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 21.5349a^2 \\ V &= \frac{1}{6} \left(25+11 \sqrt{5}\right)a^3 \\ &\approx 8.2661a^3 \end{align} |
scope=row | 61
| 100px | 23 | 45 | 24 | of order 6 | A &= \frac{3}{4} \left(5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 21.9795a^2 \\ V &= \frac{5}{8} \left(7+3 \sqrt{5}\right)a^3 \\ &\approx 8.5676a^3 \end{align} |
scope=row | 62
| Metabidiminished icosahedron | 100px | 10 | 20 | 12 | of order 4 | A &= \frac{1}{2} \left(5 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 7.7711a^2 \\ V &= \frac{1}{6} \left(5+2 \sqrt{5}\right)a^3 \\ &\approx 1.5787a^3 \end{align} |
scope=row | 63
| 100px | 9 | 15 | 8 | of order 6 | A &= \frac{1}{4} \left(5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 7.3265a^2 \\ V &= \left(\frac{5}{8}+\frac{7 \sqrt{5}}{24}\right)a^3 \\ &\approx 1.2772a^3 \end{align} |
scope=row | 64
| Augmented tridiminished icosahedron | 100px | 10 | 18 | 10 | of order 6 | A &= \frac{1}{4} \left(7 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 8.1925a^2 \\ V &= \frac{1}{24} \left(15+2 \sqrt{2}+7 \sqrt{5}\right)a^3 \\ &\approx 1.395a^3 \end{align} |
scope=row | 65
| Augmented truncated tetrahedron | 100px | 15 | 27 | 14 | of order 6 | A &= \frac{1}{2} \left(6+13 \sqrt{3}\right)a^2 \\ &\approx 14.2583a^2 \\ V &= \frac{11}{2 \sqrt{2}}a^3 \\ &\approx 3.8891a^3 \end{align} |
scope=row | 66
| 100px | 28 | 48 | 22 | of order 8 | A &= (15+10 \sqrt{2}+3 \sqrt{3})a^2 \\ &\approx 34.3383a^2 \\ V &= \left(8+\frac{16 \sqrt{2}}{3}\right)a^3 \\ &\approx 15.5425a^3 \end{align} |
scope=row | 67
| 100px | 32 | 60 | 30 | of order 16 | A &= 2 \left(9+4 \sqrt{2}+2 \sqrt{3}\right)a^2 \\ &\approx 36.2419a^2 \\ V &= (9+6 \sqrt{2})a^3 \\ &\approx 17.4853a^3 \end{align} |
scope=row | 68
| Augmented truncated dodecahedron | 100px | 65 | 105 | 42 | of order 10 | A &= \frac{1}{4} \left(20+25 \sqrt{3}+110 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 102.1821a^2 \\ V &= \left(\frac{505}{12}+\frac{81 \sqrt{5}}{4}\right)a^3 \\ &\approx 87.3637a^3 \end{align} |
scope=row | 69
| Parabiaugmented truncated dodecahedron | 100px | 70 | 120 | 52 | of order 20 | A &= \frac{1}{2} \left(20+15 \sqrt{3}+50 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 103.3734a^2 \\ V &= \frac{1}{12} \left(515+251 \sqrt{5}\right)a^3 \\ &\approx 89.6878a^3 \end{align} |
scope=row | 70
| Metabiaugmented truncated dodecahedron | 100px | 70 | 120 | 52 | of order 4 | A &= \frac{1}{2} \left(20+15 \sqrt{3}+50 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 103.3734a^2 \\ V &= \frac{1}{12} \left(515+251 \sqrt{5}\right)a^3 \\ &\approx 89.6878a^3 \end{align} |
scope=row | 71
| Triaugmented truncated dodecahedron | 100px | 75 | 135 | 62 | of order 6 | A &= \frac{1}{4} \left(60+35 \sqrt{3}+90 \sqrt{5+2 \sqrt{5}}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 104.5648a^2 \\ V &= \frac{7}{12} \left(75+37 \sqrt{5}\right)a^3 \\ &\approx 92.0118a^3 \end{align} |
scope=row | 72
| Gyrate rhombicosidodecahedron | 100px | 60 | 120 | 62 | of order 10 | A &= \left(30+5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 59.306a^2 \\ V &= \left(20+\frac{29 \sqrt{5}}{3}\right)a^3 \\ &\approx 41.6153a^3 \end{align} |
scope=row | 73
| Parabigyrate rhombicosidodecahedron | 100px | 60 | 120 | 62 | of order 20 | A &= \left(30+5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 59.306a^2 \\ V &= \left(20+\frac{29 \sqrt{5}}{3}\right)a^3 \\ &\approx 41.6153a^3 \end{align} |
scope=row | 74
| Metabigyrate rhombicosidodecahedron | 100px | 60 | 120 | 62 | of order 4 | A &= \left(30+5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 59.306a^2 \\ V &= \left(20+\frac{29 \sqrt{5}}{3}\right)a^3 \\ &\approx 41.6153a^3 \end{align} |
scope=row | 75
| Trigyrate rhombicosidodecahedron | 100px | 60 | 120 | 62 | of order 6 | A &= \left(30+5 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 59.306a^2 \\ V &= \left(20+\frac{29 \sqrt{5}}{3}\right)a^3 \\ &\approx 41.6153a^3 \end{align} |
scope=row | 76
| Diminished rhombicosidodecahedron | 100px | 55 | 105 | 52 | of order 10 | A &= \frac{1}{4} \left(100+15 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 58.1147a^2 \\ V &= \left(\frac{115}{6}+9 \sqrt{5}\right)a^3 \\ &\approx 39.2913a^3 \end{align} |
scope=row | 77
| Paragyrate diminished rhombicosidodecahedron | 100px | 55 | 105 | 52 | of order 10 | A &= \frac{1}{4} \left(100+15 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 58.1147a^2 \\ V &= \left(\frac{115}{6}+9 \sqrt{5}\right)a^3 \\ &\approx 39.2913a^3 \end{align} |
scope=row | 78
| Metagyrate diminished rhombicosidodecahedron | 100px | 55 | 105 | 52 | of order 2 | A &= \frac{1}{4} \left(100+15 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 58.1147a^2 \\ V &= \left(\frac{115}{6}+9 \sqrt{5}\right)a^3 \\ &\approx 39.2913a^3 \end{align} |
scope=row | 79
| Bigyrate diminished rhombicosidodecahedron | 100px | 55 | 105 | 52 | of order 2 | A &= \frac{1}{4} \left(100+15 \sqrt{3}+10 \sqrt{5+2 \sqrt{5}}+11 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 58.1147a^2 \\ V &= \left(\frac{115}{6}+9 \sqrt{5}\right)a^3 \\ &\approx 39.2913a^3 \end{align} |
scope=row | 80
| Parabidiminished rhombicosidodecahedron | 100px | 50 | 90 | 42 | of order 20 | A &= \frac{5}{2} \left(8+\sqrt{3}+2 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 56.9233a^2 \\ V &= \frac{5}{3} \left(11+5 \sqrt{5}\right)a^3 \\ &\approx 36.9672a^3 \end{align} |
scope=row | 81
| Metabidiminished rhombicosidodecahedron | 100px | 50 | 90 | 42 | of order 4 | A &= \frac{5}{2} \left(8+\sqrt{3}+2 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 56.9233a^2 \\ V &= \frac{5}{3} \left(11+5 \sqrt{5}\right)a^3 \\ &\approx 36.9672a^3 \end{align} |
scope=row | 82
| Gyrate bidiminished rhombicosidodecahedron | 100px | 50 | 90 | 42 | of order 2 | A &= \frac{5}{2} \left(8+\sqrt{3}+2 \sqrt{5+2 \sqrt{5}}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 56.9233a^2 \\ V &= \frac{5}{3} \left(11+5 \sqrt{5}\right)a^3 \\ &\approx 36.9672a^3 \end{align} |
scope=row | 83
| Tridiminished rhombicosidodecahedron | 100px | 45 | 75 | 32 | of order 6 | A &= \frac{1}{4} \left(60+5 \sqrt{3}+30 \sqrt{5+2 \sqrt{5}}+9 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 55.732a^2 \\ V &= \left(\frac{35}{2}+\frac{23 \sqrt{5}}{3}\right)a^3 \\ &\approx 34.6432a^3 \end{align} |
scope=row | 84
| 100px | 8 | 18 | 12 | of order 8 | A &= 3 \sqrt{3}a^2 \\ &\approx 5.1962a^2 \\ V &\approx 0.8595a^3 \end{align} |
scope=row | 85
| 100px | 16 | 40 | 26 | of order 16 | A &= 2 \left(1+3 \sqrt{3}\right)a^2 \\ &\approx 12.3923a^2 \\ V &\approx 3.6012a^3 \end{align} |
scope=row | 86
| 100px | 10 | 22 | 14 | of order 4 | A &= (2+3 \sqrt{3})a^2 \\ &\approx 7.1962a^2 \\ V &= \frac{1}{2}a^3 \sqrt{1+3 \sqrt{\frac{3}{2}}+\sqrt{13+3 \sqrt{6}}} \\ &\approx 1.5154a^3 \end{align} |
scope=row | 87
| 100px | 11 | 26 | 17 | of order 2 | A &= (1+4 \sqrt{3})a^2 \\ &\approx 7.9282a^2 \\ V &= \frac{1}{2}a^3\sqrt{1 + 3 \sqrt{\frac{3}{2}} + \sqrt{13 + 3 \sqrt{6}}}+\frac{1}{3\sqrt{2}} \\ &\approx 1.7511a^3 \end{align} |
scope=row | 88
| 100px | 12 | 28 | 18 | of order 4 | A &= 2 \left(1+2 \sqrt{3}\right)a^2 \\ &\approx 8.9282a^2 \\ V &\approx 1.9481a^3 \end{align} |
scope=row | 89
| 100px | 14 | 33 | 21 | of order 4 | A &= \frac{3}{2} \left(2+3 \sqrt{3}\right)a^2 \\ &\approx 10.7942a^2 \\ V &\approx 2.9129a^3 \end{align} |
scope=row | 90
| 100px | 16 | 38 | 24 | of order 8 | A &= (4+5 \sqrt{3})a^2 \\ &\approx 12.6603a^2 \\ V &\approx 3.7776a^3 \end{align} |
scope=row | 91
| 100px | 14 | 26 | 14 | of order 8 | A &= \left(2+2 \sqrt{3}+\sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 12.346a^2 \\ V &= \frac{1}{12} \left(17+9 \sqrt{5}\right)a^3 \\ &\approx 3.0937a^3 \end{align} |
scope=row | 92
| Triangular hebesphenorotunda | 100px | 18 | 36 | 20 | of order 6 | A &= \frac{1}{4} \left(12+19 \sqrt{3}+3 \sqrt{5 \left(5+2 \sqrt{5}\right)}\right)a^2 \\ &\approx 16.3887a^2 \\ V &= \left(\frac{5}{2}+\frac{7 \sqrt{5}}{6}\right)a^3 \\ &\approx 5.1087a^3 \end{align} |
References
{{reflist}}
Bibliography
{{Refbegin|30em}}
- {{Cite journal
| last = Berman | first = M.
| doi = 10.1016/0016-0032(71)90071-8
| journal = Journal of the Franklin Institute
| mr = 290245
| pages = 329–352
| title = Regular-faced convex polyhedra
| volume = 291
| year = 1971 | issue = 5
}}
- {{Cite conference
| last1 = Boissonnat | first1= J. D.
| last2 = Yvinec | first2 = M.
| date = June 1989
| title = Probing a scene of non convex polyhedra
| conference = Proceedings of the fifth annual symposium on Computational geometry
| pages = 237–246
| doi = 10.1145/73833.73860
| url = https://hal.inria.fr/inria-00075449/file/RR-1110.pdf
}}
- {{Cite book
| last = Cromwell | first = P. R.
| title = Polyhedra
| year = 1997
| url = https://archive.org/details/polyhedra0000crom
| publisher = Cambridge University Press
| isbn = 978-0-521-66405-9
}}
- {{Cite book
| last = Diudea | first = M. V.
| year = 2018
| title = Multi-shell Polyhedral Clusters
| series = Carbon Materials: Chemistry and Physics
| volume = 10
| publisher = Springer
| isbn = 978-3-319-64123-2
| doi = 10.1007/978-3-319-64123-2
| url = https://books.google.com/books?id=p_06DwAAQBAJ
}}
- {{Cite book
| last1 = Flusser | first1 = J.
| last2 = Suk | first2 = T.
| last3 = Zitofa | first3 = B.
| year = 2017
| title = 2D and 3D Image Analysis by Moments
| publisher = John Wiley & Sons
| isbn = 978-1-119-03935-8
| url = https://books.google.com/books?id=jwKLDQAAQBAJ
}}
- {{Cite book
| last1 = Hergert | first1 = W.
| last2 = Geilhufe | first2 = M.
| year = 2018
| title = Group Theory in Solid State Physics and Photonics: Problem Solving with Mathematica
| url = https://books.google.com/books?id=6mvpCgAAQBAJ
| publisher = John Wiley & Sons
| isbn = 978-3-527-41300-3
}}
- {{Cite book
| last = Holme | first = A.
| year = 2010
| title = Geometry: Our Cultural Heritage
| publisher = Springer
| url = https://books.google.com/books?id=zXwQGo8jyHUC
| isbn = 978-3-642-14441-7
| doi = 10.1007/978-3-642-14441-7
}}
- {{Cite journal
| last = Johnson | first = N. | authorlink = Norman Johnson (mathematician)
| title = Convex Solids with Regular Faces
| journal = Canadian Journal of Mathematics
| volume = 18
| year = 1966
| pages = 169–200
| doi = 10.4153/CJM-1966-021-8
}}
- {{Cite journal
| last = Litchenberg | first = D. R.
| year = 1988
| title = Pyramids, Prisms, Antiprisms, and Deltahedra
| journal = The Mathematics Teacher
| volume = 81
| issue = 4
| pages = 261–265
| doi = 10.5951/MT.81.4.0261
| jstor = 27965792
}}
- {{Cite book
| last = Meyer | first = W.
| year = 2006
| title = Geometry and Its Applications
| publisher = Academic Press
| url = https://books.google.com/books?id=ez6H5Ho6E3cC
| isbn = 978-0-123-69427-0
}}
- {{Cite book
| last = Parker | first = S. P.
| year = 1997
| title = Dictionary of Mathematics
| publisher = McGraw Hill
| isbn = 978-0-070-52433-0
| url = https://books.google.com/books?id=IdlzQgAACAAJ
}}
- {{Cite book
| last = Powell | first = R. C.
| year = 2010
| title = Symmetry, Group Theory, and the Physical Properties of Crystals
| series = Lecture Notes in Physics
| volume = 824
| publisher = Springer
| url = https://books.google.com/books?id=ojq5BQAAQBAJ
| isbn = 978-1-441-97598-0
| doi = 10.1007/978-1-4419-7598-0
}}
- {{Cite book
| last = Rajwade | first = A. R.
| title = Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem
| url = https://books.google.com/books?id=AGonAQAAIAAJ
| series = Texts and Readings in Mathematics
| year = 2001
| publisher = Hindustan Book Agency
| isbn = 978-9-386-27906-4
| doi = 10.1007/978-93-86279-06-4
}}
- {{Cite book
| last = Solomon | first = R. |author-link = Ronald Solomon
| year = 2003
| title = Abstract Algebra
| publisher = American Mathematical Society
| url = https://books.google.com/books?id=ouvZKQiykf4C
| isbn = 978-0-821-84795-4
}}
- {{Cite journal
| last1 = Slobodan | first1 = M.
| last2 = Obradović | first2 = M.
| last3 = Ðukanović | first3 = G.
| title = Composite Concave Cupolae as Geometric and Architectural Forms
| year = 2015
| journal = Journal for Geometry and Graphics
| volume = 19
| issue = 1
| pages = 79–91
| url = https://www.heldermann-verlag.de/jgg/jgg19/j19h1misi.pdf
}}
- {{Cite journal
| last = Timofeenko | first = A. V.
| year = 2009
| title = The Non-Platonic and Non-Archimedean Noncomposite Polyhedra
| journal = Journal of Mathematical Sciences
| volume = 162 | issue = 5 | pages = 710–729
| doi = 10.1007/s10958-009-9655-0
}}
- {{Cite book
| last = Todesco | first = G. M.
| editor-last1 = Emmer | editor-first1 = M.
| editor-last2 = Abate | editor-first2 = M.
| year = 2020
| url = https://books.google.com/books?id=wtIBEAAAQBAJ
| contribution = Hyperbolic Honeycomb
| title = Imagine Math 7: Between Culture and Mathematics
| publisher = Springer
| doi = 10.1007/978-3-030-42653-8
| isbn = 978-3-030-42653-8
}}
- {{Cite book
| last = Uehara | first = R.
| year = 2020
| title = Introduction to Computational Origami: The World of New Computational Geometry
| url = https://books.google.com/books?id=51juDwAAQBAJ
| publisher = Springer
| isbn = 978-9-811-54470-5
| doi = 10.1007/978-981-15-4470-5
}}
- {{Cite book
| last = Walsh | first = E. T.
| year = 2014
| title = A First Course in Geometry
| publisher = Dover
| url = https://books.google.com/books?id=ZhDdAwAAQBAJ
| isbn = 978-0-486-78020-7
}}
- {{Cite book
| last1 = Williams | first1 = K.
| last2 = Monteleone | first2 = C.
| year = 2021
| title = Daniele Barbaro's Perspective of 1568
| url = https://books.google.com/books?id=w5RBEAAAQBAJ
| publisher = Springer
| isbn = 978-3-030-76687-0
| doi = 10.1007/978-3-030-76687-0
}}
- {{Cite book
| last = Zalgaller | first = V. A. | author-link = Victor Zalgaller
| title = Convex Polyhedra with Regular Faces
| publisher = Springer
| year = 1969
| isbn = 978-1-489-95671-2
}}
{{Refend}}
External links
- {{Cite web
| last = Hart | first = George W. | author-link = George W. Hart
| title = Johnson Solids
| url = http://www.georgehart.com/virtual-polyhedra/johnson-info.html
}}
- {{Cite web
| url = http://bulatov.org/polyhedra/johnson/
| title = Johnson solids
| last = Bulatov | first = Vladimir
}}{{snd}}VRML models of Johnson solids
- {{Cite journal
| last = Gagnon | first = Sylvain
| url = https://upcommons.upc.edu/bitstream/handle/2099/890/st6-11-a7.pdf
| title = Les polyèdres convexes aux faces régulières
| trans-title = Convex polyhedra with regular faces
| journal = Topologie Structurale
| trans-journal = Structural Topology
| issue = 6
| year = 1982
| pages = 83–95
| language = fr
}}
{{Johnson solids navigator}}
{{DEFAULTSORT:Johnson solids, list of}}