List of spherical symmetry groups
{{Short description|None}}
{{3d point group navigator}}
Finite spherical symmetry groups are also called point groups in three dimensions. There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry.
This article lists the groups by Schoenflies notation, Coxeter notation,Johnson, 2015 orbifold notation,{{cite book | last=Conway | first=John H. | title=The symmetries of things | publisher=A.K. Peters | publication-place=Wellesley, Mass | year=2008 | isbn=978-1-56881-220-5 | oclc=181862605}} and order. John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a central inversion.{{cite book | last1=Conway | first1=John | last2=Smith | first2=Derek A. | title=On quaternions and octonions: their geometry, arithmetic, and symmetry | publisher=A.K. Peters | publication-place=Natick, Mass | year=2003 | isbn=978-1-56881-134-5 | oclc=560284450}}
Hermann–Mauguin notation (International notation) is also given. The crystallography groups, 32 in total, are a subset with element orders 2, 3, 4 and 6.Sands, "Introduction to Crystallography", 1993
Involutional symmetry
There are four involutional groups: no symmetry (C1), reflection symmetry (Cs), 2-fold rotational symmetry (C2), and central point symmetry (Ci).
class="wikitable" | |
Intl
! Geo ! Orbifold ! Conway ! colspan=2|Coxeter ! Order ! Abstract | |
---|---|
align=center
| 1 | {{overline|1}} | 11 | C1 | C1 | ][ | {{CDD|node_h2}}
| 1 | Z1 | 100px |
align=center
| 2 | {{overline|2}} | 22 | D1 | D2 | [2]+ | {{CDD|node_h2|2x|node_h2}}
| 2 | Z2 | 100px |
align=center
| {{overline|1}} | {{overline|22}} | × | Ci | CC2 | [2+,2+] | {{CDD|node_h2|2x|node_h4|2x|node_h2}}
| 2 | Z2 | 100px |
align=center
| {{overline|2}} | 1 | * | Cs | ±C1 | [ ] | {{CDD|node}}
| 2 | Z2 | 100px |
Cyclic symmetry
There are four infinite cyclic symmetry families, with n = 2 or higher. (n may be 1 as a special case as no symmetry)
class="wikitable" | |
Intl
! Geo ! Orbifold ! Conway ! colspan=2|Coxeter ! Order ! Abstract | |
---|---|
align=center
| {{overline|4}} | {{overline|42}} | 2× | S4 | CC4 | [2+,4+] | {{CDD|node_h2|2x|node_h4|2x|node_h2}}
| 4 | Z4 | 100px |
align=center
| 2/m | {{overline|2}}2 | 2* | C2h | ±C2 | [2,2+] | {{CDD|node|2|node_h2|2x|node_h2}} {{CDD|node_h2|2x|node_h2|2|node}} | 4 | Z4 | 100px |
class="wikitable" | |
Intl
! Geo ! Orbifold ! Conway ! colspan=2|Coxeter ! Order ! Abstract | |
---|---|
align=center valign=top
| 2 | {{overline|2}} | 22 | C2 | C2 | [2]+ | {{CDD|node_h2|2x|node_h2}} {{CDD|node_h2|3|node_h2}} {{CDD|node_h2|4|node_h2}} {{CDD|node_h2|4|node_h2}} {{CDD|node_h2|5|node_h2}} {{CDD|node_h2|6|node_h2}} | 2 | Z2 | 100px |
align=center valign=top
| 2mm | 2 | *22 | C2v | CD4 | [2] | {{CDD|node|2|node}} {{CDD|node|3|node}} {{CDD|node|4|node}} {{CDD|node|4|node}} {{CDD|node|5|node}} {{CDD|node|6|node}} | 4 | D4 | 100px |
align=center valign=top
| {{overline|3}} | {{overline|62}} | 3× | S6 | ±C3 | [2+,6+] | {{CDD|node_h2|2x|node_h4|6|node_h2}} {{CDD|node_h2|2x|node_h4|8|node_h2}} {{CDD|node_h2|2x|node_h4|10|node_h2}} {{CDD|node_h2|2x|node_h4|12|node_h2}} | 6 | Z6 |
align=center valign=top
| 3/m={{overline|6}} | {{overline|3}}2 | 3* | C3h | CC6 | [2,3+] | {{CDD|node|2|node_h2|3|node_h2}} {{CDD|node|2|node_h2|4|node_h2}} {{CDD|node|2|node_h2|5|node_h2}} {{CDD|node|2|node_h2|6|node_h2}} {{CDD|node|2|node_h2|n|node_h2}} | 6 | Z6 |
Dihedral symmetry
There are three infinite dihedral symmetry families, with n = 2 or higher (n may be 1 as a special case).
class="wikitable" |
Intl
! Geo ! Orbifold ! Conway ! Coxeter ! Order ! Abstract |
---|
align=center
| 222 | {{overline|2}}.{{overline|2}} | 222 | D2 | D4 | [2,2]+ | 4 | D4 |
align=center
| {{Overline|4}}2m | 4{{overline|2}} | 2*2 | D2d | DD8 | [2+,4] | 8 | D4 | 100px |
align=center
| mmm | 22 | *222 | D2h | ±D4 | [2,2] | 8 | Z2×D4 | 100px |
class="wikitable" | |||||||
Intl
! Geo ! Orbifold ! Conway ! colspan=2|Coxeter ! Order ! Abstract | |||||||
---|---|---|---|---|---|---|---|
align=center valign=top
| 32 | {{overline|3}}.{{overline|2}} | 223 | D3 | D6 | [2,3]+ | {{CDD|node_h2|2x | node_h2|3|node_h2}} {{CDD|node_h2|2x | node_h2|4|node_h2}} {{CDD|node_h2|2x | node_h2|5 | node_h2}} {{CDD|node_h2|2x | node_h2|6|node_h2}} {{CDD|node_h2|2x | node_h2|n|node_h2}}
| 6 | D6 |
align=center valign=top
| {{Overline|3}}m | 6{{overline|2}} | 2*3 | D3d | ±D6 | [2+,6] | {{CDD|node_h2|2x | node_h2|6|node}} {{CDD|node_h2|2x|node_h2|8|node}} {{CDD|node_h2|2x | node_h2|10 | node}} {{CDD|node_h2|2x | node_h2|12|node}} {{CDD|node_h2|2x | node_h2|2x|n|node}}
| 12 | D12 | 100px | |
align=center valign=top
| {{overline|6}}m2 | 32 | *223 | D3h | DD12 | [2,3] | {{CDD|node|2 | node|3|node}} {{CDD|node|2 | node|4|node}} {{CDD|node|2 | node|5 | node}} {{CDD|node|2 | node|6|node}} {{CDD|node|2 | node|n|node}}
| 12 | D12 | 100px |
Polyhedral symmetry
{{See|Polyhedral groups}}
There are three types of polyhedral symmetry: tetrahedral symmetry, octahedral symmetry, and icosahedral symmetry, named after the triangle-faced regular polyhedra with these symmetries.
class="wikitable" |
Intl
! Geo ! Orbifold ! Conway ! Coxeter ! Order ! Abstract |
---|
align=center
| 23 | {{overline|3}}.{{overline|3}} | 332 | T | T | [3,3]+ | 12 | A4 | 100px |
align=center
| m{{overline|3}} | 4{{overline|3}} | 3*2 | Th | ±T | [4,3+] | 24 | 2×A4 | 100px |
align=center
| {{overline|4}}3m | 33 | *332 | Td | TO | [3,3] | 24 | S4 | 100px |
class="wikitable" |
Intl
! Geo ! Orbifold ! Conway ! Coxeter ! Order ! Abstract |
---|
align=center
| 432 | {{overline|4}}.{{overline|3}} | 432 | O | O | [4,3]+ | 24 | S4 | 100px |
align=center
| m{{overline|3}}m | 43 | *432 | Oh | ±O | [4,3] | 48 | 2×S4 | 100px |
class="wikitable" |
Intl
! Geo ! Orbifold ! Conway ! Coxeter ! Order ! Abstract |
---|
align=center
| 532 | {{overline|5}}.{{overline|3}} | 532 | I | I | [5,3]+ | 60 | A5 | 100px |
align=center
| {{overline|53}}2/m | 53 | *532 | Ih | ±I | [5,3] | 120 | 2×A5 | 100px |
Continuous symmetries
All of the discrete point symmetries are subgroups of certain continuous symmetries. They can be classified as products of orthogonal groups O(n) or special orthogonal groups SO(n). O(1) is a single orthogonal reflection, dihedral symmetry order 2, Dih1. SO(1) is just the identity. Half turns, C2, are needed to complete.
class=wikitable
!Rank 3 groups | Other names | colspan=2|Example geometry | Example finite subgroups | |
align=center
|O(3) | Full symmetry of the sphere | rowspan=2|100px | [3,3] = {{CDD|node|3|node|3|node}}, [4,3] = {{CDD|node|4|node|3|node}}, [5,3] = {{CDD|node|5|node|3|node}} [4,3+] = {{CDD|node|4|node_h2|3|node_h2}} | |
align=center bgcolor="#ffe0e0"
|SO(3) | Sphere group | Rotational symmetry | [3,3]+ = {{CDD|node_h2|3|node_h2|3|node_h2}}, [4,3]+ = {{CDD|node_h2|4|node_h2|3|node_h2}}, [5,3]+ = {{CDD|node_h2|5|node_h2|3|node_h2}} | |
align=center
|O(2)×O(1) | Dih∞×Dih1 Dih∞⋊C2 | Full symmetry of a spheroid, torus, cylinder, bicone or hyperboloid Full circular symmetry with half turn | rowspan=3|100px100px45px48px100px | [p,2] = [p]×[ ] = {{CDD|node|p|node|2|node}} [2p,2+] = {{CDD|node|2x|p|node_h2|2x|node_h2}}, [2p+,2+] = {{CDD|node_h2|2x|p|node_h4|2x|node_h2}} |
align=center bgcolor="#ffffe0"
|SO(2)×O(1) | C∞×Dih1 | Rotational symmetry with reflection | [p+,2] = [p]+×[ ] = {{CDD|node_h2|p|node_h2|2|node}} | |
align=center bgcolor="#ffe0e0"
|SO(2)⋊C2 | C∞⋊C2 | Rotational symmetry with half turn | [p,2]+ = {{CDD|node_h2|p|node_h2|2x|node_h2}} | |
align=center
|O(2)×SO(1) | Dih∞ Circular symmetry | Full symmetry of a hemisphere, cone, paraboloid or any surface of revolution | rowspan=2|130px85px70px100px | [p,1] = [p] = {{CDD|node|p|node}} |
align=center bgcolor="#ffe0e0"
|SO(2)×SO(1) | C∞ Circle group | Rotational symmetry | [p,1]+ = [p]+ = {{CDD|node_h2|p|node_h2}} |
See also
References
{{reflist}}
Further reading
- Peter R. Cromwell, Polyhedra (1997), Appendix I
- {{cite book|last=Sands |first=Donald E. |title=Introduction to Crystallography |year=1993 |publisher=Dover Publications, Inc. |location=Mineola, New York |isbn=0-486-67839-3 |chapter=Crystal Systems and Geometry |page=165 }}
- On Quaternions and Octonions, 2003, John Horton Conway and Derek A. Smith {{isbn|978-1-56881-134-5}}
- The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, {{isbn|978-1-56881-220-5}}
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- N.W. Johnson: Geometries and Transformations, (2018) {{ISBN|978-1-107-10340-5}} Chapter 11: Finite symmetry groups, Table 11.4 Finite Groups of Isometries in 3-space
External links
- [http://www.geom.uiuc.edu/~math5337/Orbifolds/costs.html Finite spherical symmetry groups]
- {{MathWorld | urlname=SchoenfliesSymbol | title=Schoenflies symbol}}
- {{MathWorld | urlname=CrystallographicPointGroups | title=Crystallographic point groups}}
- [https://web.archive.org/web/20080316083237/http://homepage.mac.com/dmccooey/polyhedra/Simplest.html Simplest Canonical Polyhedra of Each Symmetry Type], by David I. McCooey
{{DEFAULTSORT:Finite spherical symmetry groups}}