List of Runge–Kutta methods#Explicit methods
{{Short description|none}}
Runge–Kutta methods are methods for the numerical solution of the ordinary differential equation
:
Explicit Runge–Kutta methods take the form
:
y_{n+1} &= y_n + h \sum_{i=1}^s b_i k_i \\
k_1 &= f(t_n, y_n), \\
k_2 &= f(t_n+c_2h, y_n+h(a_{21}k_1)), \\
k_3 &= f(t_n+c_3h, y_n+h(a_{31}k_1+a_{32}k_2)), \\
&\;\;\vdots \\
k_i &= f\left(t_n + c_i h, y_n + h \sum_{j = 1}^{i-1} a_{ij} k_j\right).
\end{align}
Stages for implicit methods of s stages take the more general form, with the solution to be found over all s
:
Each method listed on this page is defined by its Butcher tableau, which puts the coefficients of the method in a table as follows:
:
\begin{array}{c|cccc}
c_1 & a_{11} & a_{12}& \dots & a_{1s}\\
c_2 & a_{21} & a_{22}& \dots & a_{2s}\\
\vdots & \vdots & \vdots& \ddots& \vdots\\
c_s & a_{s1} & a_{s2}& \dots & a_{ss} \\
\hline
& b_1 & b_2 & \dots & b_s\\
\end{array}
For adaptive and implicit methods, the Butcher tableau is extended to give values of , and the estimated error is then
:.
Explicit methods
The explicit methods are those where the matrix is lower triangular.
=First-order methods=
==Forward Euler==
The Euler method is first order. The lack of stability and accuracy limits its popularity mainly to use as a simple introductory example of a numeric solution method.
:
\begin{array}{c|c}
0 & 0 \\
\hline
& 1 \\
\end{array}
=Second-order methods=
==Generic second-order method==
Second-order methods can be generically written as follows:{{cite book | last1=Butcher | first1=John C. | author1-link = John C. Butcher | title=Numerical Methods for Ordinary Differential Equations | publisher=John Wiley | isbn=978-0-471-96758-3 | year=2003}}
:
\begin{array}{c|ccc}
0 & 0 & 0 \\
\alpha & \alpha & 0 \\
\hline
& 1-\frac{1}{2\alpha} & \frac{1}{2\alpha} \\
\end{array}
with α ≠ 0.
==Explicit midpoint method==
The (explicit) midpoint method is a second-order method with two stages (see also the implicit midpoint method below):
:
\begin{array}{c|cc}
0 & 0 & 0 \\
1/2 & 1/2 & 0 \\
\hline
& 0 & 1 \\
\end{array}
==Heun's method==
Heun's method is a second-order method with two stages. It is also known as the explicit trapezoid rule, improved Euler's method, or modified Euler's method:
:
\begin{array}{c|cc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& 1/2 & 1/2 \\
\end{array}
==Ralston's method==
Ralston's method is a second-order method{{cite journal |last1=Ralston |first1=Anthony |title=Runge-Kutta Methods with Minimum Error Bounds |journal=Math. Comput. |date=1962 |volume=16 |issue=80 |pages=431–437|doi=10.1090/S0025-5718-1962-0150954-0 |doi-access=free }} with two stages and a minimum local error bound:
:
\begin{array}{c|cc}
0 & 0 & 0 \\
2/3 & 2/3 & 0 \\
\hline
& 1/4 & 3/4 \\
\end{array}
=Third-order methods=
==Generic third-order method==
Third-order methods can be generically written as follows:
:
\begin{array}{c|ccc}
0 & 0 & 0 & 0\\
\alpha & \alpha & 0 & 0\\
\beta &\frac{\beta}{\alpha}\frac{\beta-3\alpha(1-\alpha)}{(3\alpha-2)} & -\frac{\beta}{\alpha}\frac{\beta-\alpha}{(3\alpha-2)} & 0\\
\hline
& 1-\frac{3\alpha+3\beta-2}{6\alpha\beta} & \frac{3\beta-2}{6\alpha(\beta-\alpha)} & \frac{2-3\alpha}{6\beta(\beta-\alpha)} \\
\end{array}
with α ≠ 0, α ≠ {{Frac|2|3}}, β ≠ 0, and α ≠ β.
==Kutta's third-order method==
:
\begin{array}{c|ccc}
0 & 0 & 0 & 0 \\
1/2 & 1/2 & 0 & 0 \\
1 & -1 & 2 & 0 \\
\hline
& 1/6 & 2/3 & 1/6 \\
\end{array}
==Heun's third-order method==
:
\begin{array}{c|ccc}
0 & 0 & 0 & 0 \\
1/3 & 1/3 & 0 & 0 \\
2/3 & 0 & 2/3 & 0 \\
\hline
& 1/4 & 0 & 3/4 \\
\end{array}
==Ralston's third-order method==
Ralston's third-order method has a minimum local error bound and is used in the embedded Bogacki–Shampine method.
:
\begin{array}{c|ccc}
0 & 0 & 0 & 0 \\
1/2 & 1/2 & 0 & 0 \\
3/4 & 0 & 3/4 & 0 \\
\hline
& 2/9 & 1/3 & 4/9 \\
\end{array}
==Van der Houwen's/Wray's third-order method==
:
\begin{array}{c|ccc}
0 & 0 & 0 & 0 \\
8/15 & 8/15 & 0 & 0 \\
2/3 & 1/4 & 5/12 & 0 \\
\hline
& 1/4 & 0 & 3/4 \\
\end{array}
==Third-order Strong Stability Preserving Runge-Kutta (SSPRK3)==
:
\begin{array}{c|ccc}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1/2 & 1/4 & 1/4 & 0 \\
\hline
& 1/6 & 1/6 & 2/3 \\
\end{array}
=Fourth-order methods=
==Classic fourth-order method==
The "original" Runge–Kutta method.{{cite journal |last1=Kutta | first1=Martin | author1-link=Martin Kutta | title=Beitrag zur näherungsweisen Integration totaler Differentialgleichungen | journal=Zeitschrift für Mathematik und Physik | volume=46 | pages=435–453 | year=1901}}
:
\begin{array}{c|cccc}
0 & 0 & 0 & 0 & 0\\
1/2 & 1/2 & 0 & 0 & 0\\
1/2 & 0 & 1/2 & 0 & 0\\
1 & 0 & 0 & 1 & 0\\
\hline
& 1/6 & 1/3 & 1/3 & 1/6\\
\end{array}
==3/8-rule fourth-order method==
This method doesn't have as much notoriety as the "classic" method, but is just as classic because it was proposed in the same paper (Kutta, 1901).
:
\begin{array}{c|cccc}
0 & 0 & 0 & 0 & 0\\
1/3 & 1/3 & 0 & 0 & 0\\
2/3 & -1/3 & 1 & 0 & 0\\
1 & 1 & -1 & 1 & 0\\
\hline
& 1/8 & 3/8 & 3/8 & 1/8\\
\end{array}
==Ralston's fourth-order method==
This fourth order method has minimum truncation error.
:
0 & 0 & 0 & 0 & 0\\
\frac{2}{5} & \frac{2}{5} & 0 & 0 & 0\\
\frac{14 - 3 \sqrt{5}}{16} & \frac{-2\,889 + 1\,428\sqrt{5}}{1\,024} & \frac{3\,785 - 1\,620\sqrt{5}}{1\,024} & 0 & 0\\
1 & \frac{-3\,365 + 2\,094\sqrt{5}}{6\,040} & \frac{-975 - 3\,046\sqrt{5}}{2\,552} & \frac{467\,040 + 203\,968\sqrt{5}}{240\,845} & 0\\
\hline
& \frac{263 + 24\sqrt{5}}{1\,812} & \frac{125 - 1000\sqrt{5}}{3\,828} & \frac{3\,426\,304 + 1\,661\,952\sqrt{5}}{5\,924\,787} & \frac{30 - 4\sqrt{5}}{123}\\
\end{array}
= Fifth-order methods =
== Nyström's fifth-order method ==
This fifth-order method was a correction of the one proposed originally by Kutta's work.{{Cite journal |last=Butcher |first=J. C. |date=1996-03-01 |title=A history of Runge-Kutta methods |url=https://linkinghub.elsevier.com/retrieve/pii/0168927495001085 |journal=Applied Numerical Mathematics |volume=20 |issue=3 |pages=247–260 |doi=10.1016/0168-9274(95)00108-5 |issn=0168-9274}}
\begin{array}{c|cccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0\\
\frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 & 0\\
\frac{2}{5} & \frac{4}{25} & \frac{6}{25} & 0 & 0 & 0 & 0\\
1 & \frac{1}{4} & -3 & \frac{15}{4} & 0 & 0 & 0\\
\frac{2}{3} & \frac{2}{27} & \frac{10}{9} & -\frac{50}{81} & \frac{8}{81} & 0 & 0\\
\frac{4}{5} & \frac{2}{25} & \frac{12}{25} & \frac{2}{15} & \frac{8}{75} & 0 & 0\\
\hline
& \frac{23}{192} & 0 & \frac{125}{192} & 0 & -\frac{27}{64} & \frac{125}{192}\\
\end{array}
Embedded methods
The embedded methods are designed to produce an estimate of the local truncation error of a single Runge–Kutta step, and as result, allow to control the error with adaptive stepsize. This is done by having two methods in the tableau, one with order p and one with order p-1.
The lower-order step is given by
:
where the are the same as for the higher order method. Then the error is
:
which is . The Butcher Tableau for this kind of method is extended to give the values of
:
\begin{array}{c|cccc}
c_1 & a_{11} & a_{12}& \dots & a_{1s}\\
c_2 & a_{21} & a_{22}& \dots & a_{2s}\\
\vdots & \vdots & \vdots& \ddots& \vdots\\
c_s & a_{s1} & a_{s2}& \dots & a_{ss} \\
\hline
& b_1 & b_2 & \dots & b_s\\
& b_1^* & b_2^* & \dots & b_s^*\\
\end{array}
=Heun–Euler=
The simplest adaptive Runge–Kutta method involves combining Heun's method, which is order 2, with the Euler method, which is order 1. Its extended Butcher Tableau is:
:
\begin{array}{c|cc}
0&\\
1& 1 \\
\hline
& 1/2& 1/2\\
& 1 & 0
\end{array}
The error estimate is used to control the stepsize.
= Fehlberg RK1(2) =
The Fehlberg method{{Cite report
| last = Fehlberg
| first = E.
| date = July 1969
| title = Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems
| type = NASA Technical Report R-315
| url = https://ntrs.nasa.gov/search.jsp?R=19690021375
}} has two methods of orders 1 and 2. Its extended Butcher Tableau is:
cellpadding="3px" cellspacing="0px"
| width="20px" | | style="border-right:1px solid;" | 0 | |||
style="border-right:1px solid;" | 1/2 | 1/2 | |||
style="border-right:1px solid; border-bottom:1px solid;" |1 | style="border-bottom:1px solid;" |1/256 | style="border-bottom:1px solid;"|255/256 | style="border-bottom:1px solid;" | | |
style="border-right:1px solid;" | | 1/512 | 255/256 | 1/512 | |
style="border-right:1px solid;" | | 1/256 | 255/256 | 0 |
The first row of b coefficients gives the second-order accurate solution, and the second row has order one.
=Bogacki–Shampine=
The Bogacki–Shampine method has two methods of orders 2 and 3. Its extended Butcher Tableau is:
cellpadding=3px cellspacing=0px
|width="20px"| | style="border-right:1px solid;" | 0 | ||||
style="border-right:1px solid;" | 1/2 | 1/2 | ||||
style="border-right:1px solid;" | 3/4 | 0 | 3/4 | |||
style="border-right:1px solid; border-bottom:1px solid;" | 1 | style="border-bottom:1px solid;" | 2/9 | style="border-bottom:1px solid;" | 1/3 | style="border-bottom:1px solid;" | 4/9 | style="border-bottom:1px solid;" | | |
style="border-right:1px solid;" | | 2/9 | 1/3 | 4/9 | 0 | |
style="border-right:1px solid;" | | 7/24 | 1/4 | 1/3 | 1/8 |
The first row of b coefficients gives the third-order accurate solution, and the second row has order two.
=Fehlberg=
The Runge–Kutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is:
:
0 & & & & & \\
1 / 4 & 1 / 4 & & & \\
3 / 8 & 3 / 32 & 9 / 32 & & \\
12 / 13 & 1932 / 2197 & -7200 / 2197 & 7296 / 2197 & \\
1 & 439 / 216 & -8 & 3680 / 513 & -845 / 4104 & \\
1 / 2 & -8 / 27 & 2 & -3544 / 2565 & 1859 / 4104 & -11 / 40 \\
\hline & 16 / 135 & 0 & 6656 / 12825 & 28561 / 56430 & -9 / 50 & 2 / 55 \\
& 25 / 216 & 0 & 1408 / 2565 & 2197 / 4104 & -1 / 5 & 0
\end{array}
The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.
The coefficients here allow for an adaptive stepsize to be determined automatically.
=Cash-Karp=
Cash and Karp have modified Fehlberg's original idea. The extended tableau for the Cash–Karp method is
cellpadding=3px cellspacing=0px
|width="20px"| | style="border-right:1px solid;" | 0 | ||||||
style="border-right:1px solid;" | 1/5 | 1/5 | ||||||
style="border-right:1px solid;" | 3/10 | 3/40 | 9/40 | |||||
style="border-right:1px solid;" | 3/5 | 3/10 | −9/10 | 6/5 | ||||
style="border-right:1px solid;" | 1 | −11/54 | 5/2 | −70/27 | 35/27 | |||
style="border-right:1px solid; border-bottom:1px solid;" | 7/8 | style="border-bottom:1px solid;" | 1631/55296 | style="border-bottom:1px solid;" | 175/512 | style="border-bottom:1px solid;" | 575/13824 | style="border-bottom:1px solid;" | 44275/110592 | style="border-bottom:1px solid;" | 253/4096 | style="border-bottom:1px solid;" | | |
style="border-right:1px solid;" | | 37/378 | 0 | 250/621 | 125/594 | 0 | 512/1771 | |
style="border-right:1px solid;" | | 2825/27648 | 0 | 18575/48384 | 13525/55296 | 277/14336 | 1/4 |
The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.
=Dormand–Prince=
The extended tableau for the Dormand–Prince method is
cellpadding=3px cellspacing=0px
|width="20px"| | style="border-right:1px solid;" | 0 | |||||||
style="border-right:1px solid;" | 1/5 | 1/5 | |||||||
style="border-right:1px solid;" | 3/10 | 3/40 | 9/40 | ||||||
style="border-right:1px solid;" | 4/5 | 44/45 | −56/15 | 32/9 | |||||
style="border-right:1px solid;" | 8/9 | 19372/6561 | −25360/2187 | 64448/6561 | −212/729 | ||||
style="border-right:1px solid;" | 1 | 9017/3168 | −355/33 | 46732/5247 | 49/176 | −5103/18656 | |||
style="border-right:1px solid; border-bottom:1px solid;" | 1 | style="border-bottom:1px solid;" | 35/384 | style="border-bottom:1px solid;" | 0 | style="border-bottom:1px solid;" | 500/1113 | style="border-bottom:1px solid;" | 125/192 | style="border-bottom:1px solid;" | −2187/6784 | style="border-bottom:1px solid;" | 11/84 | style="border-bottom:1px solid;" | | |
style="border-right:1px solid;" | | 35/384 | 0 | 500/1113 | 125/192 | −2187/6784 | 11/84 | 0 | |
style="border-right:1px solid;" | | 5179/57600 | 0 | 7571/16695 | 393/640 | −92097/339200 | 187/2100 | 1/40 |
The first row of b coefficients gives the fifth-order accurate solution, and the second row gives the fourth-order accurate solution.
Implicit methods
=Backward Euler=
The backward Euler method is first order. Unconditionally stable and non-oscillatory for linear diffusion problems.
:
\begin{array}{c|c}
1 & 1 \\
\hline
& 1 \\
\end{array}
=Implicit midpoint=
The implicit midpoint method is of second order. It is the simplest method in the class of collocation methods known as the Gauss-Legendre methods. It is a symplectic integrator.
:
\begin{array}{c|c}
1/2 & 1/2 \\
\hline
& 1
\end{array}
=Crank-Nicolson method=
The Crank–Nicolson method corresponds to the implicit trapezoidal rule and is a second-order accurate and A-stable method.
:
\begin{array}{c|cc}
0 & 0 & 0 \\
1 & 1/2 & 1/2 \\
\hline
& 1/2 & 1/2 \\
\end{array}
=Gauss–Legendre methods=
These methods are based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method of order four has Butcher tableau:
:
\begin{array}{c|cc}
\frac{1}{2}-\frac{\sqrt3}{6} & \frac{1}{4} & \frac{1}{4}-\frac{\sqrt3}{6} \\
\frac{1}{2}+\frac{\sqrt3}{6} & \frac{1}{4}+\frac{\sqrt3}{6} &\frac{1}{4} \\
\hline
& \frac{1}{2} & \frac{1}{2}\\
& \frac12+\frac{\sqrt3}{2} & \frac12-\frac{\sqrt3}{2} \\
\end{array}
The Gauss–Legendre method of order six has Butcher tableau:
:
\begin{array}{c|ccc}
\frac{1}{2} - \frac{\sqrt{15}}{10} & \frac{5}{36} & \frac{2}{9}- \frac{\sqrt{15}}{15} & \frac{5}{36} - \frac{\sqrt{15}}{30} \\
\frac{1}{2} & \frac{5}{36} + \frac{\sqrt{15}}{24} & \frac{2}{9} & \frac{5}{36} - \frac{\sqrt{15}}{24}\\
\frac{1}{2} + \frac{\sqrt{15}}{10} & \frac{5}{36} + \frac{\sqrt{15}}{30} & \frac{2}{9} + \frac{\sqrt{15}}{15} & \frac{5}{36} \\
\hline
& \frac{5}{18} & \frac{4}{9} & \frac{5}{18} \\
& -\frac56 & \frac83 & -\frac56
\end{array}
= Diagonally Implicit Runge–Kutta methods =
Diagonally Implicit Runge–Kutta (DIRK) formulae have been widely used for the numerical solution of stiff initial value problems;
the advantage of this approach is that here the solution may be found sequentially as opposed to simultaneously.
The simplest method from this class is the order 2 implicit midpoint method.
Kraaijevanger and Spijker's two-stage Diagonally Implicit Runge–Kutta method:
:
\begin{array}{c|cc}
1/2 & 1/2 & 0 \\
3/2 & -1/2 & 2 \\
\hline
& -1/2 & 3/2 \\
\end{array}
Qin and Zhang's two-stage, 2nd order, symplectic Diagonally Implicit Runge–Kutta method:
:
\begin{array}{c|cc}
1/4 & 1/4 & 0 \\
3/4 & 1/2 & 1/4 \\
\hline
& 1/2 & 1/2 \\
\end{array}
Pareschi and Russo's two-stage 2nd order Diagonally Implicit Runge–Kutta method:
:
\begin{array}{c|cc}
x & x & 0 \\
1 - x & 1 - 2x & x \\
\hline
& \frac{1}{2} & \frac{1}{2}\\
\end{array}
This Diagonally Implicit Runge–Kutta method is A-stable if and only if . Moreover, this method is L-stable if and only if equals one of the roots of the polynomial , i.e. if .
Qin and Zhang's Diagonally Implicit Runge–Kutta method corresponds to Pareschi and Russo's Diagonally Implicit Runge–Kutta method with .
Two-stage 2nd order Diagonally Implicit Runge–Kutta method:
:
\begin{array}{c|cc}
x & x & 0 \\
1 & 1 - x & x \\
\hline
& 1 - x & x\\
\end{array}
Again, this Diagonally Implicit Runge–Kutta method is A-stable if and only if . As the previous method, this method is again L-stable if and only if equals one of the roots of the polynomial , i.e. if . This condition is also necessary for 2nd order accuracy.
Crouzeix's two-stage, 3rd order Diagonally Implicit Runge–Kutta method:
:
\begin{array}{c|cc}
\frac{1}{2}+\frac{\sqrt3}{6} & \frac{1}{2}+\frac{\sqrt3}{6} & 0 \\
\frac{1}{2}-\frac{\sqrt3}{6} & -\frac{\sqrt3}{3} & \frac{1}{2}+\frac{\sqrt3}{6} \\
\hline
& \frac{1}{2} & \frac{1}{2}\\
\end{array}
Crouzeix's three-stage, 4th order Diagonally Implicit Runge–Kutta method:
:
\begin{array}{c|ccc}
\frac{1+\alpha}{2} & \frac{1+\alpha}{2} & 0 & 0 \\
\frac{1}{2} & -\frac{\alpha}{2} & \frac{1+\alpha}{2} & 0 \\
\frac{1-\alpha}{2} & 1+\alpha & -(1+2\,\alpha) & \frac{1+\alpha}{2} \\\hline
& \frac{1}{6\alpha^2} & 1 - \frac{1}{3\alpha^2} & \frac{1}{6\alpha^2}\\
\end{array}
with .
Three-stage, 3rd order, L-stable Diagonally Implicit Runge–Kutta method:
:
\begin{array}{c|ccc}
x & x & 0 & 0 \\
\frac{1+x}{2} & \frac{1-x}{2} & x & 0 \\
1 & -3x^2/2+4x-1/4 & 3x^2/2-5x+5/4 & x \\
\hline
& -3x^2/2+4x-1/4 & 3x^2/2-5x+5/4 & x \\
\end{array}
with
Nørsett's three-stage, 4th order Diagonally Implicit Runge–Kutta method has the following Butcher tableau:
:
\begin{array}{c|ccc}
x & x & 0 & 0 \\
1/2 & 1/2-x & x & 0 \\
1-x & 2x & 1-4x & x \\
\hline
& \frac{1}{6(1-2x)^2} & \frac{3(1-2x)^2 - 1}{3(1-2x)^2} & \frac{1}{6(1-2x)^2} \\
\end{array}
with one of the three roots of the cubic equation . The three roots of this cubic equation are approximately , , and . The root gives the best stability properties for initial value problems.
Four-stage, 3rd order, L-stable Diagonally Implicit Runge–Kutta method
:
\begin{array}{c|cccc}
1/2 & 1/2 & 0 & 0 & 0 \\
2/3 & 1/6 & 1/2 & 0 & 0 \\
1/2 & -1/2 & 1/2 & 1/2 & 0 \\
1 & 3/2 & -3/2 & 1/2 & 1/2 \\
\hline
& 3/2 & -3/2 & 1/2 & 1/2 \\
\end{array}
=Lobatto methods=
There are three main families of Lobatto methods, called IIIA, IIIB and IIIC (in classical mathematical literature, the symbols I and II are reserved for two types of Radau methods). These are named after Rehuel Lobatto as a reference to the Lobatto quadrature rule, but were introduced by Byron L. Ehle in his thesis.{{harvtxt|Ehle|1969}} All are implicit methods, have order 2s − 2 and they all have c1 = 0 and cs = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Lobatto lived before the classic fourth-order method was popularized by Runge and Kutta.
==Lobatto IIIA methods==
The Lobatto IIIA methods are collocation methods. The second-order method is known as the trapezoidal rule:
:
\begin{array}{c|cc}
0 & 0 & 0 \\
1 & 1/2 & 1/2\\
\hline
& 1/2 & 1/2\\
& 1 & 0 \\
\end{array}
The fourth-order method is given by
:
\begin{array}{c|ccc}
0 & 0 & 0 & 0 \\
1/2 & 5/24& 1/3 & -1/24\\
1 & 1/6 & 2/3 & 1/6 \\
\hline
& 1/6 & 2/3 & 1/6 \\
& -\frac12 & 2 & -\frac12 \\
\end{array}
These methods are A-stable, but neither L-stable nor B-stable.
==Lobatto IIIB methods==
The Lobatto IIIB methods are not collocation methods, but they can be viewed as discontinuous collocation methods {{harv|Hairer|Lubich|Wanner|2006|loc=§II.1.4}}. The second-order method is given by
:
\begin{array}{c|cc}
0 & 1/2 & 0 \\
1 & 1/2 & 0 \\
\hline
& 1/2 & 1/2\\
& 1 & 0 \\
\end{array}
The fourth-order method is given by
:
\begin{array}{c|ccc}
0 & 1/6 & -1/6& 0 \\
1/2 & 1/6 & 1/3 & 0 \\
1 & 1/6 & 5/6 & 0 \\
\hline
& 1/6 & 2/3 & 1/6 \\
& -\frac12 & 2 & -\frac12 \\
\end{array}
Lobatto IIIB methods are A-stable, but neither L-stable nor B-stable.
==Lobatto IIIC methods==
The Lobatto IIIC methods also are discontinuous collocation methods. The second-order method is given by
:
\begin{array}{c|cc}
0 & 1/2 & -1/2\\
1 & 1/2 & 1/2 \\
\hline
& 1/2 & 1/2 \\
& 1 & 0 \\
\end{array}
The fourth-order method is given by
:
\begin{array}{c|ccc}
0 & 1/6 & -1/3& 1/6 \\
1/2 & 1/6 & 5/12& -1/12\\
1 & 1/6 & 2/3 & 1/6 \\
\hline
& 1/6 & 2/3 & 1/6 \\
& -\frac12 & 2 & -\frac12 \\
\end{array}
They are L-stable. They are also algebraically stable and thus B-stable, that makes them suitable for stiff problems.
==Lobatto IIIC* methods==
The Lobatto IIIC* methods are also known as Lobatto III methods (Butcher, 2008), Butcher's Lobatto methods (Hairer et al., 1993), and Lobatto IIIC methods (Sun, 2000) in the literature.See Laurent O. Jay (N.D.). [http://homepage.math.uiowa.edu/~ljay/publications.dir/Lobatto.pdf "Lobatto methods"]. University of Iowa The second-order method is given by
:
\begin{array}{c|cc}
0 & 0 & 0\\
1 & 1 & 0 \\
\hline
& 1/2 & 1/2 \\
\end{array}
Butcher's three-stage, fourth-order method is given by
:
\begin{array}{c|ccc}
0 & 0 & 0 & 0 \\
1/2 & 1/4 & 1/4 & 0\\
1 & 0 & 1 & 0 \\
\hline
& 1/6 & 2/3 & 1/6 \\
\end{array}
These methods are not A-stable, B-stable or L-stable. The Lobatto IIIC* method for is sometimes called the explicit trapezoidal rule.
==Generalized Lobatto methods==
One can consider a very general family of methods with three real parameters by considering Lobatto coefficients of the form
:,
where
:.
For example, Lobatto IIID family introduced in (Nørsett and Wanner, 1981), also called Lobatto IIINW, are given by
:
\begin{array}{c|cc}
0 & 1/2 & 1/2\\
1 & -1/2 & 1/2 \\
\hline
& 1/2 & 1/2 \\
\end{array}
and
:
\begin{array}{c|ccc}
0 & 1/6 & 0 & -1/6 \\
1/2 & 1/12 & 5/12 & 0\\
1 & 1/2 & 1/3 & 1/6 \\
\hline
& 1/6 & 2/3 & 1/6 \\
\end{array}
These methods correspond to , , , and . The methods are L-stable. They are algebraically stable and thus B-stable.
=Radau methods=
Radau methods are fully implicit methods (matrix A of such methods can have any structure). Radau methods attain order 2s − 1 for s stages. Radau methods are A-stable, but expensive to implement. Also they can suffer from order reduction.
==Radau IA methods==
The first order method is similar to the backward Euler method and given by
:
\begin{array}{c|cc}
0 & 1 \\
\hline
& 1 \\
\end{array}
The third-order method is given by
:
\begin{array}{c|cc}
0 & 1/4 & -1/4 \\
2/3 & 1/4 & 5/12 \\
\hline
& 1/4 & 3/4 \\
\end{array}
The fifth-order method is given by
:
\begin{array}{c|ccc}
0 & \frac{1}{9} & \frac{-1 - \sqrt{6}}{18} & \frac{-1 + \sqrt{6}}{18} \\
\frac{3}{5} - \frac{\sqrt{6}}{10} & \frac{1}{9} & \frac{11}{45} + \frac{7\sqrt{6}}{360} & \frac{11}{45} - \frac{43\sqrt{6}}{360}\\
\frac{3}{5} + \frac{\sqrt{6}}{10} & \frac{1}{9} & \frac{11}{45} + \frac{43\sqrt{6}}{360} & \frac{11}{45} - \frac{7\sqrt{6}}{360} \\
\hline
& \frac{1}{9} & \frac{4}{9} + \frac{\sqrt{6}}{36} & \frac{4}{9} - \frac{\sqrt{6}}{36} \\
\end{array}
==Radau IIA methods==
The ci of this method are zeros of
:.
The first-order method is equivalent to the backward Euler method.
The third-order method is given by
:
\begin{array}{c|cc}
1/3 & 5/12 & -1/12\\
1 & 3/4 & 1/4 \\
\hline
& 3/4 & 1/4 \\
\end{array}
The fifth-order method is given by
:
\begin{array}{c|ccc}
\frac{2}{5} - \frac{\sqrt{6}}{10} & \frac{11}{45} - \frac{7\sqrt{6}}{360} & \frac{37}{225} - \frac{169\sqrt{6}}{1800} & -\frac{2}{225} + \frac{\sqrt{6}}{75} \\
\frac{2}{5} + \frac{\sqrt{6}}{10} & \frac{37}{225} + \frac{169\sqrt{6}}{1800} & \frac{11}{45} + \frac{7\sqrt{6}}{360} & -\frac{2}{225} - \frac{\sqrt{6}}{75}\\
1 & \frac{4}{9} - \frac{\sqrt{6}}{36} & \frac{4}{9} + \frac{\sqrt{6}}{36} & \frac{1}{9} \\
\hline
& \frac{4}{9} - \frac{\sqrt{6}}{36} & \frac{4}{9} + \frac{\sqrt{6}}{36} & \frac{1}{9} \\
\end{array}
Notes
{{Reflist}}
References
- {{cite thesis|last1=Ehle|first1=Byron L.|title=On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems|url=https://cs.uwaterloo.ca/research/tr/1969/CS-RR-2010.pdf|date=1969}}
- {{Citation | last1=Hairer | first1=Ernst | last2=Nørsett | first2=Syvert Paul | last3=Wanner | first3=Gerhard | title=Solving ordinary differential equations I: Nonstiff problems | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-3-540-56670-0 | year=1993}}.
- {{Citation | last1=Hairer | first1=Ernst | last2=Wanner | first2=Gerhard | title=Solving ordinary differential equations II: Stiff and differential-algebraic problems | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-3-540-60452-5 | year=1996}}.
- {{Citation | last1=Hairer | first1=Ernst | last2=Lubich | first2=Christian | last3=Wanner | first3=Gerhard | title=Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations | publisher=Springer-Verlag | location=Berlin, New York | edition=2nd | isbn=978-3-540-30663-4 | year=2006}}.
{{Numerical integrators}}
{{DEFAULTSORT:Runge-Kutta methods}}
Category:Numerical differential equations