List of Runge–Kutta methods#Explicit methods

{{Short description|none}}

Runge–Kutta methods are methods for the numerical solution of the ordinary differential equation

:\frac{d y}{d t} = f(t, y).

Explicit Runge–Kutta methods take the form

:\begin{align}

y_{n+1} &= y_n + h \sum_{i=1}^s b_i k_i \\

k_1 &= f(t_n, y_n), \\

k_2 &= f(t_n+c_2h, y_n+h(a_{21}k_1)), \\

k_3 &= f(t_n+c_3h, y_n+h(a_{31}k_1+a_{32}k_2)), \\

&\;\;\vdots \\

k_i &= f\left(t_n + c_i h, y_n + h \sum_{j = 1}^{i-1} a_{ij} k_j\right).

\end{align}

Stages for implicit methods of s stages take the more general form, with the solution to be found over all s

:k_i = f\left(t_n + c_i h, y_n + h \sum_{j = 1}^{s} a_{ij} k_j\right).

Each method listed on this page is defined by its Butcher tableau, which puts the coefficients of the method in a table as follows:

:

\begin{array}{c|cccc}

c_1 & a_{11} & a_{12}& \dots & a_{1s}\\

c_2 & a_{21} & a_{22}& \dots & a_{2s}\\

\vdots & \vdots & \vdots& \ddots& \vdots\\

c_s & a_{s1} & a_{s2}& \dots & a_{ss} \\

\hline

& b_1 & b_2 & \dots & b_s\\

\end{array}

For adaptive and implicit methods, the Butcher tableau is extended to give values of b^*_i, and the estimated error is then

: e_{n+1} = h\sum_{i=1}^s (b_i - b^*_i) k_i.

Explicit methods

The explicit methods are those where the matrix [a_{ij}] is lower triangular.

=First-order methods=

==Forward Euler==

The Euler method is first order. The lack of stability and accuracy limits its popularity mainly to use as a simple introductory example of a numeric solution method.

:

\begin{array}{c|c}

0 & 0 \\

\hline

& 1 \\

\end{array}

=Second-order methods=

==Generic second-order method==

Second-order methods can be generically written as follows:{{cite book | last1=Butcher | first1=John C. | author1-link = John C. Butcher | title=Numerical Methods for Ordinary Differential Equations | publisher=John Wiley | isbn=978-0-471-96758-3 | year=2003}}

:

\begin{array}{c|ccc}

0 & 0 & 0 \\

\alpha & \alpha & 0 \\

\hline

& 1-\frac{1}{2\alpha} & \frac{1}{2\alpha} \\

\end{array}

with α ≠ 0.

==Explicit midpoint method==

The (explicit) midpoint method is a second-order method with two stages (see also the implicit midpoint method below):

:

\begin{array}{c|cc}

0 & 0 & 0 \\

1/2 & 1/2 & 0 \\

\hline

& 0 & 1 \\

\end{array}

==Heun's method==

Heun's method is a second-order method with two stages. It is also known as the explicit trapezoid rule, improved Euler's method, or modified Euler's method:

:

\begin{array}{c|cc}

0 & 0 & 0 \\

1 & 1 & 0 \\

\hline

& 1/2 & 1/2 \\

\end{array}

==Ralston's method==

Ralston's method is a second-order method{{cite journal |last1=Ralston |first1=Anthony |title=Runge-Kutta Methods with Minimum Error Bounds |journal=Math. Comput. |date=1962 |volume=16 |issue=80 |pages=431–437|doi=10.1090/S0025-5718-1962-0150954-0 |doi-access=free }} with two stages and a minimum local error bound:

:

\begin{array}{c|cc}

0 & 0 & 0 \\

2/3 & 2/3 & 0 \\

\hline

& 1/4 & 3/4 \\

\end{array}

=Third-order methods=

==Generic third-order method==

Third-order methods can be generically written as follows:

:

\begin{array}{c|ccc}

0 & 0 & 0 & 0\\

\alpha & \alpha & 0 & 0\\

\beta &\frac{\beta}{\alpha}\frac{\beta-3\alpha(1-\alpha)}{(3\alpha-2)} & -\frac{\beta}{\alpha}\frac{\beta-\alpha}{(3\alpha-2)} & 0\\

\hline

& 1-\frac{3\alpha+3\beta-2}{6\alpha\beta} & \frac{3\beta-2}{6\alpha(\beta-\alpha)} & \frac{2-3\alpha}{6\beta(\beta-\alpha)} \\

\end{array}

with α ≠ 0, α ≠ {{Frac|2|3}}, β ≠ 0, and αβ.

==Kutta's third-order method==

:

\begin{array}{c|ccc}

0 & 0 & 0 & 0 \\

1/2 & 1/2 & 0 & 0 \\

1 & -1 & 2 & 0 \\

\hline

& 1/6 & 2/3 & 1/6 \\

\end{array}

==Heun's third-order method==

:

\begin{array}{c|ccc}

0 & 0 & 0 & 0 \\

1/3 & 1/3 & 0 & 0 \\

2/3 & 0 & 2/3 & 0 \\

\hline

& 1/4 & 0 & 3/4 \\

\end{array}

==Ralston's third-order method==

Ralston's third-order method has a minimum local error bound and is used in the embedded Bogacki–Shampine method.

:

\begin{array}{c|ccc}

0 & 0 & 0 & 0 \\

1/2 & 1/2 & 0 & 0 \\

3/4 & 0 & 3/4 & 0 \\

\hline

& 2/9 & 1/3 & 4/9 \\

\end{array}

==Van der Houwen's/Wray's third-order method==

:

\begin{array}{c|ccc}

0 & 0 & 0 & 0 \\

8/15 & 8/15 & 0 & 0 \\

2/3 & 1/4 & 5/12 & 0 \\

\hline

& 1/4 & 0 & 3/4 \\

\end{array}

==Third-order Strong Stability Preserving Runge-Kutta (SSPRK3)==

:

\begin{array}{c|ccc}

0 & 0 & 0 & 0 \\

1 & 1 & 0 & 0 \\

1/2 & 1/4 & 1/4 & 0 \\

\hline

& 1/6 & 1/6 & 2/3 \\

\end{array}

=Fourth-order methods=

==Classic fourth-order method==

The "original" Runge–Kutta method.{{cite journal |last1=Kutta | first1=Martin | author1-link=Martin Kutta | title=Beitrag zur näherungsweisen Integration totaler Differentialgleichungen | journal=Zeitschrift für Mathematik und Physik | volume=46 | pages=435–453 | year=1901}}

:

\begin{array}{c|cccc}

0 & 0 & 0 & 0 & 0\\

1/2 & 1/2 & 0 & 0 & 0\\

1/2 & 0 & 1/2 & 0 & 0\\

1 & 0 & 0 & 1 & 0\\

\hline

& 1/6 & 1/3 & 1/3 & 1/6\\

\end{array}

==3/8-rule fourth-order method==

This method doesn't have as much notoriety as the "classic" method, but is just as classic because it was proposed in the same paper (Kutta, 1901).

:

\begin{array}{c|cccc}

0 & 0 & 0 & 0 & 0\\

1/3 & 1/3 & 0 & 0 & 0\\

2/3 & -1/3 & 1 & 0 & 0\\

1 & 1 & -1 & 1 & 0\\

\hline

& 1/8 & 3/8 & 3/8 & 1/8\\

\end{array}

==Ralston's fourth-order method==

This fourth order method has minimum truncation error.

:\begin{array}{c|cccc}

0 & 0 & 0 & 0 & 0\\

\frac{2}{5} & \frac{2}{5} & 0 & 0 & 0\\

\frac{14 - 3 \sqrt{5}}{16} & \frac{-2\,889 + 1\,428\sqrt{5}}{1\,024} & \frac{3\,785 - 1\,620\sqrt{5}}{1\,024} & 0 & 0\\

1 & \frac{-3\,365 + 2\,094\sqrt{5}}{6\,040} & \frac{-975 - 3\,046\sqrt{5}}{2\,552} & \frac{467\,040 + 203\,968\sqrt{5}}{240\,845} & 0\\

\hline

& \frac{263 + 24\sqrt{5}}{1\,812} & \frac{125 - 1000\sqrt{5}}{3\,828} & \frac{3\,426\,304 + 1\,661\,952\sqrt{5}}{5\,924\,787} & \frac{30 - 4\sqrt{5}}{123}\\

\end{array}

= Fifth-order methods =

== Nyström's fifth-order method ==

This fifth-order method was a correction of the one proposed originally by Kutta's work.{{Cite journal |last=Butcher |first=J. C. |date=1996-03-01 |title=A history of Runge-Kutta methods |url=https://linkinghub.elsevier.com/retrieve/pii/0168927495001085 |journal=Applied Numerical Mathematics |volume=20 |issue=3 |pages=247–260 |doi=10.1016/0168-9274(95)00108-5 |issn=0168-9274}}

\begin{array}{c|cccccc}

0 & 0 & 0 & 0 & 0 & 0 & 0\\

\frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 & 0\\

\frac{2}{5} & \frac{4}{25} & \frac{6}{25} & 0 & 0 & 0 & 0\\

1 & \frac{1}{4} & -3 & \frac{15}{4} & 0 & 0 & 0\\

\frac{2}{3} & \frac{2}{27} & \frac{10}{9} & -\frac{50}{81} & \frac{8}{81} & 0 & 0\\

\frac{4}{5} & \frac{2}{25} & \frac{12}{25} & \frac{2}{15} & \frac{8}{75} & 0 & 0\\

\hline

& \frac{23}{192} & 0 & \frac{125}{192} & 0 & -\frac{27}{64} & \frac{125}{192}\\

\end{array}

Embedded methods

The embedded methods are designed to produce an estimate of the local truncation error of a single Runge–Kutta step, and as result, allow to control the error with adaptive stepsize. This is done by having two methods in the tableau, one with order p and one with order p-1.

The lower-order step is given by

: y^*_{n+1} = y_n + h\sum_{i=1}^s b^*_i k_i,

where the k_i are the same as for the higher order method. Then the error is

: e_{n+1} = y_{n+1} - y^*_{n+1} = h\sum_{i=1}^s (b_i - b^*_i) k_i,

which is O(h^p). The Butcher Tableau for this kind of method is extended to give the values of b^*_i

:

\begin{array}{c|cccc}

c_1 & a_{11} & a_{12}& \dots & a_{1s}\\

c_2 & a_{21} & a_{22}& \dots & a_{2s}\\

\vdots & \vdots & \vdots& \ddots& \vdots\\

c_s & a_{s1} & a_{s2}& \dots & a_{ss} \\

\hline

& b_1 & b_2 & \dots & b_s\\

& b_1^* & b_2^* & \dots & b_s^*\\

\end{array}

=Heun–Euler=

The simplest adaptive Runge–Kutta method involves combining Heun's method, which is order 2, with the Euler method, which is order 1. Its extended Butcher Tableau is:

:

\begin{array}{c|cc}

0&\\

1& 1 \\

\hline

& 1/2& 1/2\\

& 1 & 0

\end{array}

The error estimate is used to control the stepsize.

= Fehlberg RK1(2) =

The Fehlberg method{{Cite report

| last = Fehlberg

| first = E.

| date = July 1969

| title = Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems

| type = NASA Technical Report R-315

| url = https://ntrs.nasa.gov/search.jsp?R=19690021375

}} has two methods of orders 1 and 2. Its extended Butcher Tableau is:

cellpadding="3px" cellspacing="0px"

| width="20px" |

style="border-right:1px solid;" | 0
style="border-right:1px solid;" | 1/21/2
style="border-right:1px solid; border-bottom:1px solid;" |1style="border-bottom:1px solid;" |1/256style="border-bottom:1px solid;"|255/256style="border-bottom:1px solid;" |
style="border-right:1px solid;" |1/512255/2561/512
style="border-right:1px solid;" |1/256255/2560

The first row of b coefficients gives the second-order accurate solution, and the second row has order one.

=Bogacki–Shampine=

The Bogacki–Shampine method has two methods of orders 2 and 3. Its extended Butcher Tableau is:

cellpadding=3px cellspacing=0px

|width="20px"|

style="border-right:1px solid;" | 0
style="border-right:1px solid;" | 1/21/2
style="border-right:1px solid;" | 3/403/4
style="border-right:1px solid; border-bottom:1px solid;" | 1style="border-bottom:1px solid;" | 2/9style="border-bottom:1px solid;" | 1/3style="border-bottom:1px solid;" | 4/9style="border-bottom:1px solid;" |
style="border-right:1px solid;" |2/91/34/90
style="border-right:1px solid;" |7/241/41/31/8

The first row of b coefficients gives the third-order accurate solution, and the second row has order two.

=Fehlberg=

The Runge–Kutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is:

: \begin{array}{r|ccccc}

0 & & & & & \\

1 / 4 & 1 / 4 & & & \\

3 / 8 & 3 / 32 & 9 / 32 & & \\

12 / 13 & 1932 / 2197 & -7200 / 2197 & 7296 / 2197 & \\

1 & 439 / 216 & -8 & 3680 / 513 & -845 / 4104 & \\

1 / 2 & -8 / 27 & 2 & -3544 / 2565 & 1859 / 4104 & -11 / 40 \\

\hline & 16 / 135 & 0 & 6656 / 12825 & 28561 / 56430 & -9 / 50 & 2 / 55 \\

& 25 / 216 & 0 & 1408 / 2565 & 2197 / 4104 & -1 / 5 & 0

\end{array}

The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.

The coefficients here allow for an adaptive stepsize to be determined automatically.

=Cash-Karp=

Cash and Karp have modified Fehlberg's original idea. The extended tableau for the Cash–Karp method is

cellpadding=3px cellspacing=0px

|width="20px"|

style="border-right:1px solid;" | 0
style="border-right:1px solid;" | 1/51/5
style="border-right:1px solid;" | 3/103/409/40
style="border-right:1px solid;" | 3/53/10−9/106/5
style="border-right:1px solid;" | 1−11/545/2−70/2735/27
style="border-right:1px solid; border-bottom:1px solid;" | 7/8style="border-bottom:1px solid;" | 1631/55296style="border-bottom:1px solid;" | 175/512style="border-bottom:1px solid;" | 575/13824style="border-bottom:1px solid;" | 44275/110592style="border-bottom:1px solid;" | 253/4096style="border-bottom:1px solid;" |
style="border-right:1px solid;" |37/3780250/621125/5940512/1771
style="border-right:1px solid;" |2825/27648018575/4838413525/55296277/143361/4

The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.

=Dormand–Prince=

The extended tableau for the Dormand–Prince method is

cellpadding=3px cellspacing=0px

|width="20px"|

style="border-right:1px solid;" | 0
style="border-right:1px solid;" | 1/51/5
style="border-right:1px solid;" | 3/103/409/40
style="border-right:1px solid;" | 4/544/45−56/1532/9
style="border-right:1px solid;" | 8/919372/6561−25360/218764448/6561−212/729
style="border-right:1px solid;" | 19017/3168−355/3346732/524749/176−5103/18656
style="border-right:1px solid; border-bottom:1px solid;" | 1style="border-bottom:1px solid;" | 35/384style="border-bottom:1px solid;" | 0style="border-bottom:1px solid;" | 500/1113style="border-bottom:1px solid;" | 125/192style="border-bottom:1px solid;" | −2187/6784style="border-bottom:1px solid;" | 11/84style="border-bottom:1px solid;" |
style="border-right:1px solid;" |35/3840500/1113125/192−2187/678411/840
style="border-right:1px solid;" |5179/5760007571/16695393/640−92097/339200187/21001/40

The first row of b coefficients gives the fifth-order accurate solution, and the second row gives the fourth-order accurate solution.

Implicit methods

=Backward Euler=

The backward Euler method is first order. Unconditionally stable and non-oscillatory for linear diffusion problems.

:

\begin{array}{c|c}

1 & 1 \\

\hline

& 1 \\

\end{array}

=Implicit midpoint=

The implicit midpoint method is of second order. It is the simplest method in the class of collocation methods known as the Gauss-Legendre methods. It is a symplectic integrator.

:

\begin{array}{c|c}

1/2 & 1/2 \\

\hline

& 1

\end{array}

=Crank-Nicolson method=

The Crank–Nicolson method corresponds to the implicit trapezoidal rule and is a second-order accurate and A-stable method.

:

\begin{array}{c|cc}

0 & 0 & 0 \\

1 & 1/2 & 1/2 \\

\hline

& 1/2 & 1/2 \\

\end{array}

=Gauss–Legendre methods=

These methods are based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method of order four has Butcher tableau:

:

\begin{array}{c|cc}

\frac{1}{2}-\frac{\sqrt3}{6} & \frac{1}{4} & \frac{1}{4}-\frac{\sqrt3}{6} \\

\frac{1}{2}+\frac{\sqrt3}{6} & \frac{1}{4}+\frac{\sqrt3}{6} &\frac{1}{4} \\

\hline

& \frac{1}{2} & \frac{1}{2}\\

& \frac12+\frac{\sqrt3}{2} & \frac12-\frac{\sqrt3}{2} \\

\end{array}

The Gauss–Legendre method of order six has Butcher tableau:

:

\begin{array}{c|ccc}

\frac{1}{2} - \frac{\sqrt{15}}{10} & \frac{5}{36} & \frac{2}{9}- \frac{\sqrt{15}}{15} & \frac{5}{36} - \frac{\sqrt{15}}{30} \\

\frac{1}{2} & \frac{5}{36} + \frac{\sqrt{15}}{24} & \frac{2}{9} & \frac{5}{36} - \frac{\sqrt{15}}{24}\\

\frac{1}{2} + \frac{\sqrt{15}}{10} & \frac{5}{36} + \frac{\sqrt{15}}{30} & \frac{2}{9} + \frac{\sqrt{15}}{15} & \frac{5}{36} \\

\hline

& \frac{5}{18} & \frac{4}{9} & \frac{5}{18} \\

& -\frac56 & \frac83 & -\frac56

\end{array}

= Diagonally Implicit Runge–Kutta methods =

Diagonally Implicit Runge–Kutta (DIRK) formulae have been widely used for the numerical solution of stiff initial value problems;

For discussion see: {{cite journal |author1=Christopher A. Kennedy|author2=Mark H. Carpenter|title=Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations. A Review |journal=Technical Memorandum, NASA STI Program |date=2016|volume=|issue=|pages=|doi= |doi-access=|url=https://ntrs.nasa.gov/citations/20160005923}}

the advantage of this approach is that here the solution may be found sequentially as opposed to simultaneously.

The simplest method from this class is the order 2 implicit midpoint method.

Kraaijevanger and Spijker's two-stage Diagonally Implicit Runge–Kutta method:

:

\begin{array}{c|cc}

1/2 & 1/2 & 0 \\

3/2 & -1/2 & 2 \\

\hline

& -1/2 & 3/2 \\

\end{array}

Qin and Zhang's two-stage, 2nd order, symplectic Diagonally Implicit Runge–Kutta method:

:

\begin{array}{c|cc}

1/4 & 1/4 & 0 \\

3/4 & 1/2 & 1/4 \\

\hline

& 1/2 & 1/2 \\

\end{array}

Pareschi and Russo's two-stage 2nd order Diagonally Implicit Runge–Kutta method:

:

\begin{array}{c|cc}

x & x & 0 \\

1 - x & 1 - 2x & x \\

\hline

& \frac{1}{2} & \frac{1}{2}\\

\end{array}

This Diagonally Implicit Runge–Kutta method is A-stable if and only if x \ge \frac{1}{4}. Moreover, this method is L-stable if and only if x equals one of the roots of the polynomial x^2 - 2x + \frac{1}{2}, i.e. if x = 1 \pm \frac{\sqrt2}{2}.

Qin and Zhang's Diagonally Implicit Runge–Kutta method corresponds to Pareschi and Russo's Diagonally Implicit Runge–Kutta method with x = 1/4.

Two-stage 2nd order Diagonally Implicit Runge–Kutta method:

:

\begin{array}{c|cc}

x & x & 0 \\

1 & 1 - x & x \\

\hline

& 1 - x & x\\

\end{array}

Again, this Diagonally Implicit Runge–Kutta method is A-stable if and only if x \ge \frac{1}{4}. As the previous method, this method is again L-stable if and only if x equals one of the roots of the polynomial x^2 - 2x + \frac{1}{2}, i.e. if x = 1 \pm \frac{\sqrt2}{2}. This condition is also necessary for 2nd order accuracy.

Crouzeix's two-stage, 3rd order Diagonally Implicit Runge–Kutta method:

:

\begin{array}{c|cc}

\frac{1}{2}+\frac{\sqrt3}{6} & \frac{1}{2}+\frac{\sqrt3}{6} & 0 \\

\frac{1}{2}-\frac{\sqrt3}{6} & -\frac{\sqrt3}{3} & \frac{1}{2}+\frac{\sqrt3}{6} \\

\hline

& \frac{1}{2} & \frac{1}{2}\\

\end{array}

Crouzeix's three-stage, 4th order Diagonally Implicit Runge–Kutta method:

:

\begin{array}{c|ccc}

\frac{1+\alpha}{2} & \frac{1+\alpha}{2} & 0 & 0 \\

\frac{1}{2} & -\frac{\alpha}{2} & \frac{1+\alpha}{2} & 0 \\

\frac{1-\alpha}{2} & 1+\alpha & -(1+2\,\alpha) & \frac{1+\alpha}{2} \\\hline

& \frac{1}{6\alpha^2} & 1 - \frac{1}{3\alpha^2} & \frac{1}{6\alpha^2}\\

\end{array}

with \alpha = \frac{2}{\sqrt3}\cos{\frac{\pi}{18}}.

Three-stage, 3rd order, L-stable Diagonally Implicit Runge–Kutta method:

:

\begin{array}{c|ccc}

x & x & 0 & 0 \\

\frac{1+x}{2} & \frac{1-x}{2} & x & 0 \\

1 & -3x^2/2+4x-1/4 & 3x^2/2-5x+5/4 & x \\

\hline

& -3x^2/2+4x-1/4 & 3x^2/2-5x+5/4 & x \\

\end{array}

with x = 0.4358665215

Nørsett's three-stage, 4th order Diagonally Implicit Runge–Kutta method has the following Butcher tableau:

:

\begin{array}{c|ccc}

x & x & 0 & 0 \\

1/2 & 1/2-x & x & 0 \\

1-x & 2x & 1-4x & x \\

\hline

& \frac{1}{6(1-2x)^2} & \frac{3(1-2x)^2 - 1}{3(1-2x)^2} & \frac{1}{6(1-2x)^2} \\

\end{array}

with x one of the three roots of the cubic equation x^3 -3x^2/2 + x/2 - 1/24 = 0. The three roots of this cubic equation are approximately x_1 = \frac{1}{2} + \frac{1}{\sqrt{3}} \cos\frac{\pi}{18} = 1.068579021301629, x_2 = 0.1288864005157204, and x_3 = 0.3025345781826508. The root x_1 gives the best stability properties for initial value problems.

Four-stage, 3rd order, L-stable Diagonally Implicit Runge–Kutta method

:

\begin{array}{c|cccc}

1/2 & 1/2 & 0 & 0 & 0 \\

2/3 & 1/6 & 1/2 & 0 & 0 \\

1/2 & -1/2 & 1/2 & 1/2 & 0 \\

1 & 3/2 & -3/2 & 1/2 & 1/2 \\

\hline

& 3/2 & -3/2 & 1/2 & 1/2 \\

\end{array}

=Lobatto methods=

There are three main families of Lobatto methods, called IIIA, IIIB and IIIC (in classical mathematical literature, the symbols I and II are reserved for two types of Radau methods). These are named after Rehuel Lobatto as a reference to the Lobatto quadrature rule, but were introduced by Byron L. Ehle in his thesis.{{harvtxt|Ehle|1969}} All are implicit methods, have order 2s − 2 and they all have c1 = 0 and cs = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Lobatto lived before the classic fourth-order method was popularized by Runge and Kutta.

==Lobatto IIIA methods==

The Lobatto IIIA methods are collocation methods. The second-order method is known as the trapezoidal rule:

:

\begin{array}{c|cc}

0 & 0 & 0 \\

1 & 1/2 & 1/2\\

\hline

& 1/2 & 1/2\\

& 1 & 0 \\

\end{array}

The fourth-order method is given by

:

\begin{array}{c|ccc}

0 & 0 & 0 & 0 \\

1/2 & 5/24& 1/3 & -1/24\\

1 & 1/6 & 2/3 & 1/6 \\

\hline

& 1/6 & 2/3 & 1/6 \\

& -\frac12 & 2 & -\frac12 \\

\end{array}

These methods are A-stable, but neither L-stable nor B-stable.

==Lobatto IIIB methods==

The Lobatto IIIB methods are not collocation methods, but they can be viewed as discontinuous collocation methods {{harv|Hairer|Lubich|Wanner|2006|loc=§II.1.4}}. The second-order method is given by

:

\begin{array}{c|cc}

0 & 1/2 & 0 \\

1 & 1/2 & 0 \\

\hline

& 1/2 & 1/2\\

& 1 & 0 \\

\end{array}

The fourth-order method is given by

:

\begin{array}{c|ccc}

0 & 1/6 & -1/6& 0 \\

1/2 & 1/6 & 1/3 & 0 \\

1 & 1/6 & 5/6 & 0 \\

\hline

& 1/6 & 2/3 & 1/6 \\

& -\frac12 & 2 & -\frac12 \\

\end{array}

Lobatto IIIB methods are A-stable, but neither L-stable nor B-stable.

==Lobatto IIIC methods==

The Lobatto IIIC methods also are discontinuous collocation methods. The second-order method is given by

:

\begin{array}{c|cc}

0 & 1/2 & -1/2\\

1 & 1/2 & 1/2 \\

\hline

& 1/2 & 1/2 \\

& 1 & 0 \\

\end{array}

The fourth-order method is given by

:

\begin{array}{c|ccc}

0 & 1/6 & -1/3& 1/6 \\

1/2 & 1/6 & 5/12& -1/12\\

1 & 1/6 & 2/3 & 1/6 \\

\hline

& 1/6 & 2/3 & 1/6 \\

& -\frac12 & 2 & -\frac12 \\

\end{array}

They are L-stable. They are also algebraically stable and thus B-stable, that makes them suitable for stiff problems.

==Lobatto IIIC* methods==

The Lobatto IIIC* methods are also known as Lobatto III methods (Butcher, 2008), Butcher's Lobatto methods (Hairer et al., 1993), and Lobatto IIIC methods (Sun, 2000) in the literature.See Laurent O. Jay (N.D.). [http://homepage.math.uiowa.edu/~ljay/publications.dir/Lobatto.pdf "Lobatto methods"]. University of Iowa The second-order method is given by

:

\begin{array}{c|cc}

0 & 0 & 0\\

1 & 1 & 0 \\

\hline

& 1/2 & 1/2 \\

\end{array}

Butcher's three-stage, fourth-order method is given by

:

\begin{array}{c|ccc}

0 & 0 & 0 & 0 \\

1/2 & 1/4 & 1/4 & 0\\

1 & 0 & 1 & 0 \\

\hline

& 1/6 & 2/3 & 1/6 \\

\end{array}

These methods are not A-stable, B-stable or L-stable. The Lobatto IIIC* method for s = 2 is sometimes called the explicit trapezoidal rule.

==Generalized Lobatto methods==

One can consider a very general family of methods with three real parameters (\alpha_{A},\alpha_{B},\alpha_{C}) by considering Lobatto coefficients of the form

:a_{i,j}(\alpha_{A},\alpha_{B},\alpha_{C}) = \alpha_{A}a_{i,j}^A + \alpha_{B}a_{i,j}^B + \alpha_{C}a_{i,j}^C + \alpha_{C*}a_{i,j}^{C*} ,

where

:\alpha_{C*} = 1 - \alpha_{A} - \alpha_{B} - \alpha_{C}.

For example, Lobatto IIID family introduced in (Nørsett and Wanner, 1981), also called Lobatto IIINW, are given by

:

\begin{array}{c|cc}

0 & 1/2 & 1/2\\

1 & -1/2 & 1/2 \\

\hline

& 1/2 & 1/2 \\

\end{array}

and

:

\begin{array}{c|ccc}

0 & 1/6 & 0 & -1/6 \\

1/2 & 1/12 & 5/12 & 0\\

1 & 1/2 & 1/3 & 1/6 \\

\hline

& 1/6 & 2/3 & 1/6 \\

\end{array}

These methods correspond to \alpha_{A} = 2, \alpha_{B} = 2, \alpha_{C} = -1, and \alpha_{C*} = -2. The methods are L-stable. They are algebraically stable and thus B-stable.

=Radau methods=

Radau methods are fully implicit methods (matrix A of such methods can have any structure). Radau methods attain order 2s − 1 for s stages. Radau methods are A-stable, but expensive to implement. Also they can suffer from order reduction.

==Radau IA methods==

The first order method is similar to the backward Euler method and given by

:

\begin{array}{c|cc}

0 & 1 \\

\hline

& 1 \\

\end{array}

The third-order method is given by

:

\begin{array}{c|cc}

0 & 1/4 & -1/4 \\

2/3 & 1/4 & 5/12 \\

\hline

& 1/4 & 3/4 \\

\end{array}

The fifth-order method is given by

:

\begin{array}{c|ccc}

0 & \frac{1}{9} & \frac{-1 - \sqrt{6}}{18} & \frac{-1 + \sqrt{6}}{18} \\

\frac{3}{5} - \frac{\sqrt{6}}{10} & \frac{1}{9} & \frac{11}{45} + \frac{7\sqrt{6}}{360} & \frac{11}{45} - \frac{43\sqrt{6}}{360}\\

\frac{3}{5} + \frac{\sqrt{6}}{10} & \frac{1}{9} & \frac{11}{45} + \frac{43\sqrt{6}}{360} & \frac{11}{45} - \frac{7\sqrt{6}}{360} \\

\hline

& \frac{1}{9} & \frac{4}{9} + \frac{\sqrt{6}}{36} & \frac{4}{9} - \frac{\sqrt{6}}{36} \\

\end{array}

==Radau IIA methods==

The ci of this method are zeros of

:\frac{d^{s-1}}{dx^{s-1}}(x^{s-1}(x-1)^s).

The first-order method is equivalent to the backward Euler method.

The third-order method is given by

:

\begin{array}{c|cc}

1/3 & 5/12 & -1/12\\

1 & 3/4 & 1/4 \\

\hline

& 3/4 & 1/4 \\

\end{array}

The fifth-order method is given by

:

\begin{array}{c|ccc}

\frac{2}{5} - \frac{\sqrt{6}}{10} & \frac{11}{45} - \frac{7\sqrt{6}}{360} & \frac{37}{225} - \frac{169\sqrt{6}}{1800} & -\frac{2}{225} + \frac{\sqrt{6}}{75} \\

\frac{2}{5} + \frac{\sqrt{6}}{10} & \frac{37}{225} + \frac{169\sqrt{6}}{1800} & \frac{11}{45} + \frac{7\sqrt{6}}{360} & -\frac{2}{225} - \frac{\sqrt{6}}{75}\\

1 & \frac{4}{9} - \frac{\sqrt{6}}{36} & \frac{4}{9} + \frac{\sqrt{6}}{36} & \frac{1}{9} \\

\hline

& \frac{4}{9} - \frac{\sqrt{6}}{36} & \frac{4}{9} + \frac{\sqrt{6}}{36} & \frac{1}{9} \\

\end{array}

Notes

{{Reflist}}

References

  • {{cite thesis|last1=Ehle|first1=Byron L.|title=On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems|url=https://cs.uwaterloo.ca/research/tr/1969/CS-RR-2010.pdf|date=1969}}
  • {{Citation | last1=Hairer | first1=Ernst | last2=Nørsett | first2=Syvert Paul | last3=Wanner | first3=Gerhard | title=Solving ordinary differential equations I: Nonstiff problems | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-3-540-56670-0 | year=1993}}.
  • {{Citation | last1=Hairer | first1=Ernst | last2=Wanner | first2=Gerhard | title=Solving ordinary differential equations II: Stiff and differential-algebraic problems | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-3-540-60452-5 | year=1996}}.
  • {{Citation | last1=Hairer | first1=Ernst | last2=Lubich | first2=Christian | last3=Wanner | first3=Gerhard | title=Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations | publisher=Springer-Verlag | location=Berlin, New York | edition=2nd | isbn=978-3-540-30663-4 | year=2006}}.

{{Numerical integrators}}

{{DEFAULTSORT:Runge-Kutta methods}}

Category:Numerical differential equations

Category:Mathematics-related lists