List of Solar System objects by greatest aphelion
{{Short description|none}}
{{update|date=January 2020}}
This is a list of Solar System objects by greatest aphelion or the greatest distance from the Sun that the orbit could take it if the Sun and object were the only objects in the universe. It is implied that the object is orbiting the Sun in a two-body solution without the influence of the planets, passing stars, or the galaxy. The aphelion can change significantly due to the gravitational influence of planets and other stars. Most of these objects are comets on a calculated path and may not be directly observable. For instance, comet Hale-Bopp was last seen in 2013 at magnitude 24{{cite web|url=https://minorplanetcenter.net/db_search/show_object?utf8=%E2%9C%93&object_id=C%2F1995+O1| title=C/1995 O1 (Hale-Bopp)| publisher=Minor Planet Center| access-date=14 March 2018}} and continues to fade, making it invisible to all but the most powerful telescopes.
The maximum extent of the region in which the Sun's gravitational field is dominant, the Hill sphere, may extend to {{convert|230000|AU|ly|abbr=off|}} as calculated in the 1960s.{{Citation|last = Chebotarev|first = G.A.|title = Gravitational Spheres of the Major Planets, Moon and Sun|journal = Soviet Astronomy|volume = 7|issue = 5|pages = 618–622|year = 1964|bibcode = 1964SvA.....7..618C}} But any comet currently more than about {{convert|150000|AU|ly|abbr=on|lk=on|sigfig=1}} from the Sun can be considered lost to the interstellar medium. The nearest known star is Proxima Centauri at {{convert|4.25|ly|abbr=on|order=flip}},[http://imagine.gsfc.nasa.gov/features/cosmic/nearest_star_info.html NASA – Imagine the Universe: The Nearest Star] followed by Alpha Centauri at about 4.35 light years.
Oort cloud comets orbit the Sun at great distances, but can then be perturbed by passing stars and the galactic tides.[http://www.phys.vt.edu/~jhs/faq/astronomy.html Frequently Asked Questions About General Astronomy ] As they come into or leave the inner Solar System they may have their orbit changed by the planets, or alternatively be ejected from the Solar System. It is also possible they may collide with the Sun or a planet.
S/2021 N 1 (the outermost moon of Neptune) takes over 27 years to orbit Neptune, comets can take up to 30 million years to orbit the Sun, and the Sun orbits the Milky Way in about 230 million years (a galactic year).
class="wikitable sortable" style="text-align:center; font-size:0.9em;"
|+Satellite orbital period vs parent body orbital period ! Satellite ! Orbital period ! Parent body ! Percentage of | |||
S/2021 N 1 | 27.4 | Neptune | 16.6% |
Oort cloud comet | 30 million | Sun | 13% |
Sun | 230 million | Milky Way | N/A |
Explanation
=Barycentric vs heliocentric orbits=
File:Solar system barycenter.svg's barycenter relative to the Sun]]
As many of the objects listed below have some of the most extreme orbits of any objects in the Solar System, describing their orbit precisely can be particularly difficult and sensitive to the time the orbit is defined at. For most objects in the Solar System, a heliocentric reference frame (relative to the gravitational center of the Sun) is sufficient to explain their orbits. However, as the orbits of objects become closer to the Solar System's escape velocity, with long orbital periods on the order of hundreds or thousands of years, a different reference frame is required to describe their orbit: a barycentric reference frame. A barycentric reference frame measures the asteroid's orbit relative to the gravitational center of the entire Solar System, rather than just the Sun. Mostly due to the influence of the outer gas giants, the Solar System barycenter varies by up to twice the radius of the Sun.
This difference in position can lead to significant changes in the orbits of long-period comets and distant asteroids. Many comets have hyperbolic (unbound) orbits in a heliocentric reference frame, but in a barycentric reference frame have much more firmly bound orbits, with only a small handful remaining truly hyperbolic.
=Eccentricity and V<sub>inf</sub>=
The orbital parameter used to describe how non-circular an object's orbit is, is eccentricity (e). An object with an e of 0 has a perfectly circular orbit, with its perihelion distance being just as close to the Sun as its aphelion distance. An object with an e of between 0 and 1 will have a bound elliptical orbit. For example, an object with an e of ⅓ (0.{{overline|333}}) will have a perihelion twice as close to the Sun as its aphelion. As an object's e approaches 1, its orbit will be more and more elongated, and at e=1, the object's orbit [[Parabolic trajectory|will be
parabolic]] and unbound to the Solar System (i.e. not returning for another orbit). An e greater than 1 will produce a hyperbolic orbit and still be unbound to the Solar System.
Although it describes how "unbound" an object's orbit is, eccentricity does not necessarily reflect how high an incoming velocity said object had before entering the Solar System (a parameter known as Vinfinity, or Vinf). A clear example of this is the eccentricities of the two known Interstellar objects as of October 2019, 1I/'Oumuamua. and 2I/Borisov. 'Oumuamua had an incoming Vinf of {{convert|26.5|km/s|mph}}, but due to its low perihelion distance of only 0.255 au, it had an eccentricity of 1.200. However, Borisov's Vinf was only slightly higher, at {{convert|32.3|km/s|mph|abbr=on}}, but due to its higher perihelion distance of ~2.003 au, its eccentricity was a comparably higher 3.340. In practice, no object originating from the Solar System should have an incoming heliocentric eccentricity much higher than 1, and should rarely have an incoming barycentric eccentricity of above 1, as that would imply that the object had originated from an indefinitely far distance from the Sun.
=Orbital epochs=
Due to having the most eccentric orbits of any Solar System body, a comet's orbit typically intersects one or more of the planets in the Solar System. As a result, the orbit of a comet is frequently perturbed significantly, even over the course of a single pass through the inner Solar System. Due to the changing orbit, it's necessary to provide a calculation of the orbit of the comet (or similarly orbiting body) both before and after entering the inner Solar System. For example, Comet ISON was ~312 au from the Sun in 1600, and its remnants will be ~431 au from the Sun in 2400, both well outside of any significant gravitational influence from the planets.
Comets with greatest aphelion (2 body heliocentric)
File:New shot of Proxima Centauri, our nearest neighbour.jpg is 271,000 AU or 4.25 light years away]]
{{sticky header}}
class="wikitable sortable sticky-header"
! Object ! Heliocentric ! Barycentric ! Barycentric | |||
C/2004 R2 (ASAS) | {{convert|3238164|AU|ly|sigfig=2|abbr=on}} | 13000 AU[https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%272004+R2%27&TABLE_TYPE=%27ELEMENTS%27&START_TIME=%271800-01-01%27&STOP_TIME=%272200-01-01%27&STEP_SIZE=%27400%20years%27&CENTER=%27@0%27&OUT_UNITS=%27AU-D%27 Barycentric solution for 2004 R2] | 4000 AU |
C/2015 O1 (PANSTARRS) | {{convert|1302400|AU|ly|sigfig=2|abbr=on}} | 15000 AU[https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%272015+O1%27&TABLE_TYPE=%27ELEMENTS%27&START_TIME=%271800-01-01%27&STOP_TIME=%272200-01-01%27&STEP_SIZE=%27400%20years%27&CENTER=%27@0%27&OUT_UNITS=%27AU-D%27 Barycentric solution for 2015 O1] | 60000 AU |
id=2012S4
| C/2012 S4 (PANSTARRS) | {{convert|504443|AU|ly|sigfig=2|abbr=on}} | 5700 AU[https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%272012+S4%27&TABLE_TYPE=%27ELEMENTS%27&START_TIME=%271800-01-01%27&STOP_TIME=%272200-01-01%27&STEP_SIZE=%27400%20years%27&CENTER=%27@0%27&OUT_UNITS=%27AU-D%27 Barycentric solution for 2012 S4] | 8400 AU |
C/2012 CH17 (MOSS) | {{convert|279825|AU|ly|sigfig=2|abbr=on}} | 7283 AU | 26000 AU |
C/2008 C1 (Chen-Gao) | {{convert|203253|AU|ly|sigfig=2|abbr=on}} | 3822 AU | 520 AU |
C/1992 J1 (Spacewatch) | {{convert|226867|AU|ly|sigfig=2|abbr=on}} | 3700 AU | 75000 AU |
C/2007 N3 (Lulin) | {{convert|144828|AU|ly|sigfig=2|abbr=on}} | 2419 AU | 64000 AU |
C/2017 T2 (PANSTARRS) | {{convert|117212|AU|ly|sigfig=2|abbr=on}} | 2975 AU | 84000 AU |
C/1937 N1 (Finsler) | {{convert|115031|AU|ly|sigfig=2|abbr=on}} | 7121 AU | 16000 AU |
C/1972 X1 (Araya) | {{convert|108011|AU|ly|sigfig=2|abbr=on}} | 5630 AU | 4200 AU |
C/2014 R3 (PANSTARRS) | {{convert|80260|AU|ly|sigfig=2|abbr=on}} | 12841 AU | 19000 AU |
C/2015 O1 (PANSTARRS) | {{convert|77092|AU|ly|sigfig=2|abbr=on}} | 21753 AU | 52000 AU |
C/2001 C1 (LINEAR) | {{convert|76230|AU|ly|sigfig=2|abbr=on}} | ejection | 98000 AU |
C/2002 J4 (NEAT) | {{convert|57793|AU|ly|sigfig=2|abbr=on}} | ejection | 59000 AU |
C/1958 D1 (Burnham) | {{convert|46408|AU|ly|sigfig=2|abbr=on}} | 1110 AU | 7800 AU |
C/1986 V1 (Sorrells) | {{convert|37825|AU|ly|sigfig=2|abbr=on}} | 8946 AU | 5400 AU |
C/2005 G1 (LINEAR) | {{convert|37498|AU|ly|sigfig=2|abbr=on}} | 40572 AU | 110000 AU |
C/2006 W3 (Christensen) | {{convert|35975|AU|ly|sigfig=2|abbr=on}} | 8212 AU | 5300 AU |
C/2009 W2 (Boattini) | {{convert|31059|AU|ly|sigfig=2|abbr=on}} | 3847 AU | 4200 AU |
C/2005 L3 (McNaught) | {{convert|26779|AU|ly|sigfig=2|abbr=on}} | 6851 AU | 33000 AU |
C/2004 YJ35 (LINEAR) | {{convert|26433|AU|ly|sigfig=2|abbr=on}} | 2480 AU | 75000 AU |
C/2003 H3 (NEAT) | {{convert|26340|AU|ly|sigfig=2|abbr=on}} | ejection | 4900 AU |
C/2010 L3 (Catalina) | {{convert|25609|AU|ly|sigfig=2|abbr=on}} | 21094 AU | 12000 AU |
C/1902 R1 (Perrine) | {{convert|25066|AU|ly|sigfig=2|abbr=on}} | 2306 AU | 74000 AU |
C/1889 G1 (Barnard) | {{convert|24784|AU|ly|sigfig=2|abbr=on}} | 1575 AU | 2100 AU |
C/2007 VO53 (Spacewatch) | {{convert|24383|AU|ly|sigfig=2|abbr=on}} | 16835 AU | 22000 AU |
= Distant comets with long observation arcs and/or barycentric =
Examples of comets with a more well-determined orbit. Comets are extremely small relative to other bodies and hard to observe once they stop outgassing (see Coma (cometary)). Because they are typically discovered close to the Sun, it will take some time even thousands of years for them to actually travel out to great distances. The Whipple proposal might be able to detect Oort cloud objects at great distances, but probably not a particular object.
{{Div col|colwidth=26em}}
- Comet West 70,000 AU{{cite web
|author=Horizons output
|url=http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=C/1975+V1
|title=Barycentric Osculating Orbital Elements for Comet C/1975 V1-A (West)
|access-date=2011-02-01}} (Solution using the Solar System Barycenter. Select Ephemeris Type:Elements and Center:@0) (1.1 light-years)
- C/1999 F1 (Catalina) 66,600 AU{{cite web
|author=Horizons output
|url=http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=C/1999+F1
|title=Barycentric Osculating Orbital Elements for Comet C/1999 F1 (Catalina)
|access-date=2011-03-07}} (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0) (1.05 light-years)
- C/2012 S4 (PANSTARRS) 5700 AU (barycentric)
{{cite web
|author=Horizons output
|url=http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=2012S4
|title=Barycentric Osculating Orbital Elements for Comet C/2012 S4 (PANSTARRS)
|access-date=2015-09-26}} (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
- Comet Hyakutake (C/1996 B2) 3410 AU{{cite web
|date=2011-01-30
|author=Horizons output
|url=http://home.comcast.net/~kpheider/Hyakutake-70kyr.txt
|title=Barycentric Osculating Orbital Elements for Comet Hyakutake (C/1996 B2)
|access-date=2011-01-30}} ([http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=C/1996+B2 Horizons])
- C/1910 A1 (Great January comet) about 2974 AU (barycentric){{cite web
|author=Horizons output
|url=http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=C/1910+A1
|title=Barycentric Osculating Orbital Elements for Comet C/1910 A1 (Great January comet)
|access-date=2011-02-07}} (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
- C/1992 J1 (Spacewatch) 3650 AU{{cite web
|author=Horizons output
|url=http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=C/1992+J1
|title=Barycentric Osculating Orbital Elements for Comet C/1992 J1 (Spacewatch)
|access-date=7 October 2012}} (Solution using the Solar System Barycenter and barycentric coordinates. Select Ephemeris Type:Elements and Center:@0)
- C/2007 N3 (Lulin) 2400 AU{{cite web
|author=Horizons output
|url=http://ssd.jpl.nasa.gov/horizons.cgi?find_body=1&body_group=sb&sstr=C/2007+N3
|title=Barycentric Osculating Orbital Elements for Comet Lulin (C/2007 N3)
|access-date=2011-01-30}} (Solution using the Solar System Barycenter. Select Ephemeris Type:Elements and Center:@0)
{{Div col end}}
Minor planets
{{See also|List of trans-Neptunian objects|List of Solar System objects most distant from the Sun}}
{{Bar graph
| title = Number of minor planets (January 2024)
| float = right
| bar_width = 20
| width_units = em
| data_max = 40
| label_type = Aphelion
in AU
| data_type = Number of minor planets
| label1 =
| data1 =
| label2 = 400-800
| data2 = 36
| label3 = 800-1200
| data3 = 15
| label4 = 1200-1600
| data4 = 7
| label5 = 1600-2000
| data5 = 4
| label6 = 2000-2400
| data6 = 5
| label7 = 2400-2800
| data7 = 2
| label8 = 2800+
| data8 = 3
}}
A large number of trans-Neptunian objects (TNOs) – minor planets orbiting beyond the orbit of Neptune – have been discovered in recent years. Many TNOs have orbits that take them far beyond Pluto's aphelion of 49.3 AU. Some of these TNOs with an extreme aphelion are detached objects such as {{mpl|2010 GB|174}}, which always reside in the outermost region of the Solar System, while for other TNOs, the extreme aphelion is due to an exceptionally high eccentricity such as for {{mpl|2005 VX|3}}, which orbits the Sun at a distance between 4.1 (closer than Jupiter) and 2200 AU (70 times farther from the Sun than Neptune). The following is a list of minor planets with the largest aphelion in descending order.
= Minor planets with a heliocentric aphelion greater than 400 AU =
The following group of bodies have orbits with an aphelion above 400 AU, with 1-sigma uncertainties given to two significant digits. As of May 2024, there are 73 such bodies.{{Cite web |title=Small-Body Database Query |url=https://ssd.jpl.nasa.gov/tools/sbdb_query.html#!#results |access-date=2024-05-09 |website=ssd.jpl.nasa.gov}}
File:Sednoid orbits.png: Sedna, {{mpl|2012 VP|113}}, and Leleākūhonua]]
class="wikitable sortable sticky-header"
!Object !Aphelion (AU) !Absolute Magnitude (H) !Ref | |||
A/2020 M4 | 29020.06 ±420 | 14.01 ±0.28 | {{M+J|A/2020+M4}} |
{{mpl|2010 LN|135}} | 20162.05 ±6000 | 14.08 | {{M+J|2010+LN135}} |
A/2024 D1
|3875.88 ±2456 |11.45 ±0.52 |{{M+J|2024+D1}} | |||
{{mpl|2014 FE|72}} | 3559.58 ±220 | 6.19 | {{M+J|2014+FE72}} |
541132 Leleākūhonua | 2713.25 ±360 | 5.57 ±0.13 | {{M+J|541132}} |
{{mpl|2017 MB|7}} | 2419.67 ±320 | 14.21 ±0.33 | {{M+J|2017+MB7}} |
{{mpl|2021 RR|205}} | 2314.82 ±51 | 6.74±0.12 | {{M+J|2021+RR205}} |
{{mpl|2013 BL|76}} | 2261.12 ±2.4 | 10.88 | {{M+J|2013+BL76}} |
{{mpl|A/2019 N|2}}
|2115.35 ±690 |12.80±0.43 |{{M+J|A2019+N2}} | |||
{{mpl|2019 EU|5}} | 2108.10 ±450 | 6.35 ±0.14 | {{M+J|2019+EU5}} |
{{mpl|(308933) 2006 SQ|372}} | 2062.42 ±1.6 | 7.94 | {{M+J|308933}} |
A/2022 B3 | 1957.25 ±11 | 16.56 ±0.76 | {{M+J|A/2022+B3}} |
{{mpl|(668643) 2012 DR|30}} | 1877.78 ±1.3 | 7.12 | {{M+J|2012+DR30}} |
{{mpl|2013 SY|99}} | 1718.93 ±50 | 6.84 | {{M+J|2013+SY99}} |
{{mpl|2005 VX|3}} | 1717.16 ±300 | 14.10 | {{M+J|2005+VX3}} |
{{mpl|2021 DK|18}} | 1418.77 ±320 | 6.72 ±0.24 | {{M+J|2021+DK18}} |
A/2019 G2 | 1397.41 ±1.7 | 16.31 ±0.55 | {{M+J|A/2019+G2}} |
A/2021 E4 | 1388.62 ±1.2 | 14.26 ±0.45 | {{M+J|A/2021+E4}} |
A/2018 W3 | 1341.59 ±10 | 10.70 ±0.29 | {{M+J|A/2018+W3}} |
{{mpl|(87269) 2000 OO|67}} | 1326.78 ±0.76 | 9.10 | {{M+J|87269}} |
{{mpl|2002 RN|109}} | 1295.34 ±51 | 15.30 | {{M+J|2002+RN109}} |
{{mpl|2015 KG|163}} | 1241.82 ±7.2 | 8.20 | {{M+J|2015+KG163}} |
{{mpl|(523622) 2007 TG|422}} | 1118.81 ±0.64 | 6.47 | {{M+J|523622}} |
{{mpl|2015 SA|57}}
|1052.34 ±0.51 |9.92 ±0.37 |{{M+J|2015+SA57}} | |||
{{mpl|2013 GW|141}} | 1032.63 ±0.62 | 8.16 ±0.35 | {{M+J|2013+GW141}} |
{{mpl|2012 KA|51}} | 1015.61 ±9.9 | 11.74 ±0.79 | {{M+J|2012+KA51}} |
{{mpl|2013 RA|109}} | 1008.19 ±2.7 | 6.23 ±0.22 | {{M+J|2013+RA109}} |
90377 Sedna {{mpl|(2003 VB12)}} | 1006.90±2.7 | 1.50 | {{M+J|90377}} |
{{mpl|2020 QN|6}} | 990.67 ±0.62 | 14.55 ±0.37 | {{M+J|2020+QN6}} |
{{mpl|2014 GQ|101}}
|986.20 ±0.37 |10.56 ±0.43 |{{M+J|2014+GQ101}} | |||
{{mpl|2015 BP|519}} | 933.55 ±2.5 | 4.34 | {{M+J|2015+BP519}} |
{{mpl|2015 RX|245}} | 888.63 ±8.1 | 6.20 | {{M+J|2015+RX245}} |
{{mpl|2015 AD|298}} | 859.76 ±4.7 | 8.38 ±0.52 | {{M+J|2015+AD298}} |
{{mpl|2015 FK|37}} | 853.72 ±1.7 | 14.50 ±0.26 | {{M+J|2015+FK37}} |
{{mpl|2020 YR|3}} | 846.98 ±0.49 | 9.30 ±0.42 | {{M+J|2020+YR3}} |
{{mpl|2010 BK|118}} | 828.61 ±0.46 | 10.30 | {{M+J|2010+BK118}} |
{{mpl|2007 DA|61}} | 816.45 ±11 | 14.90 ±0.47 | {{M+J|2007+DA61}} |
{{mpl|2013 RF|98}} | 776.26 ±30 | 8.70 | {{M+J|2013+RF98}} |
{{mpl|2014 SX|403}} | 773.46 ±4.1 | 7.06 ±0.32 | {{M+J|2014+SX403}} |
{{mpl|(418993) 2009 MS|9}} | 767.45 ±0.085 | 9.74 | {{M+J|418993}} |
{{mpl|2013 AZ|60}} | 762.63 ±0.1 | 10.30 | {{M+J|2013+AZ60}} |
{{mpl|2014 RK|86}} | 753.12 ±16 | 8.22 ±0.31 | {{M+J|2014+RK86}} |
{{mpl|2018 MP|8}} | 732.44 ±7.7 | 15.30 | {{M+J|2018+MP8}} |
{{mpl|2016 SD|106}} | 731.06±7.6 | 6.70 ±0.33 | {{M+J|2016+SD106}} |
{{mpl|2014 TU|115}} | 704.80 ±2.0 | 7.86 ±0.44 | {{M+J|2014+TU115}} |
{{mpl|2021 CP|5}} | 689.35±0.57 | 12.23 ±0.41 | {{M+J|2021+CP5}} |
{{mpl|2022 LO|17}}
|684.64 ±270000 |8.52 ±0.10 |{{M+J|2022+LO17}} | |||
A/2020 H9 | 680.42 ±1.1 | 17.70 ±0.34 | {{M+J|A/2020+H9}} |
{{mpl|474640 Alicanto}} | 663.36 ±2.3 | 6.46 | {{M+J|474640}} |
{{mpl|2013 SL|102}} | 653.9 ±0.91 | 7.13 ±0.33 | {{M+J|2013+SL102}} |
{{mpl|2017 UR|52}} | 650.82 ±140 | 21.20 | {{M+J|2017+UR52}} |
{{mpl|(689335) 2013 FL|28}} | 648.32 ±0.27 | 8.07 ±0.44 | {{M+J|2013+FL28}} |
{{mpl|2021 PN|72}} | 637.57 ±0.22 | 12.04 ±0.18 | {{M+J|2021+PN72}} |
{{mpl|2010 GB|174}} | 630.26 ±14 | 6.74 | {{M+J|2010+GB174}} |
{{mpl|2014 SR|349}} | 601.90 ±2.4 | 6.46 | {{M+J|2014+SR349}} |
{{mpl|2011 OR|17}} | 579.67 ±0.35 | 13.10 | {{M+J|2011+OR17}} |
{{mpl|(336756) 2010 NV|1}} | 570.60 ±0.17 | 10.55 | {{M+J|336756}} |
{{mpl|2014 WB|556}} | 560.73 ±1.2 | 7.26 ±0.27 | {{M+J|2014+WB556}} |
{{mpl|2015 GT|50}} | 554.67 ±4.5 | 8.50 | {{M+J|2015+GT50}} |
{{mpl|1996 PW |
|-
|{{mpl|2018 VM|35}}|| 545.94 ±34 || 7.76 ±0.05 || {{M+J|2018+VM35}}
|-
|{{mpl|(523719) 2014 LM|28}}
|543.67 ±0.15
|9.95
|{{M+J|523719}}
|-
|{{mpl|2013 FT|28}}|| 519.49 ±2.7 || 7.20 || {{M+J|2013+FT28}}
|-
|{{mpl|2017 SN|33}}|| 511.63 ±16 || 17.90 || {{M+J|2017+SN33}}
|-
|{{mpl|2015 DM|319}}
|505.11 ±2.3
|8.78 ±0.11
|{{M+J|2015+DM319}}
|-
|{{mpl|2016 SA|59}} || 484.56 ±1.2 || 7.81 ±0.36 || {{M+J|2016+SA59}}
|-
|{{mpl|(582301) 2015 RM|306}} || 480.63 ±0.028 || 11.06 ±0.44 || {{M+J|582301}}
|-
|{{mpl|2012 VP|113}} || 467.17 ±0.99 || 4.09 || {{M+J|2012+VP113}}
|-
|{{mpl|2016 SG|58}} || 464.64±0.39 || 7.50 ±0.41 || {{M+J|2016+SG58}}
|-
|{{mpl|2015 RY|245}} || 449.66 ±9.0 || 8.90 || {{M+J|2015+RY245}}
|-
|A/2021 E2 || 430.46 ±8.3 || 17.90 ±0.44 || {{M+J|A/2021+E2}}
|-
|{{mpl|2014 QW|510}}
|411.63 ±0.32
|7.53 ±0.24
|{{M+J|2014+QW510}}
|-
|{{mpl|(148209) 2000 CR|105}}
|400.29 ±1.2
|6.14
|{{M+J|148209}}
|}
=Greatest barycentric aphelion=
The following asteroids have an incoming barycentric aphelion of at least 1000 AU.{{cn|date=November 2022}}
class="wikitable sortable sticky-header"
!name !diameter (km) (assumed) !perihelion (AU) !Barycentric aphelion (AU) (1800) !Barycentric aphelion (AU) (2200) !Change (%) | |||||
A/2020 M4 | 5.2 | 5.95 | 5580 | 4500 | -24 |
{{mpl|2014 FE|72}} | 206.8 | 36.33 | 3071 | 3060 | -0.36 |
{{mpl|2002 RN|109}} | 3.0 | 2.691 | 2320 | 1190 | -49 |
{{mpl|2005 VX|3}} | 5.2 | 4.106 | 2140 | 1700 | -21 |
541132 Leleākūhonua | 272.6 | 65.08 | 2280 | 2280 | 0 |
A/2022 B3 | 1.9 | 3.708 | 2100 | 2540 | +21 |
{{mpl|2017 MB|7}} | 5.2 | 4.456 | 2040 | 2840 | +28 |
{{mpl|(668643) 2012 DR|30}} | 130.5 | 14.57 | 2000 | 2050 | +2.4 |
{{mpl|2013 BL|76}} | 23.7 | 8.355 | 1850 | 1920 | +3.6 |
{{mpl|(308933) 2006 SQ|372}} | 94.5 | 24.14 | 1540 | 1560 | +1.3 |
{{mpl|2013 SY|99}} | 156.8 | 50.03 | 1410 | 1410 | 0 |
{{mpl|2015 KG|163}} | 78.6 | 40.50 | 1320 | 1320 | 0 |
{{mpl|2013 AZ|60}} | 29.9 | 7.927 | 1260 | 827 | -34 |
{{mpl|2007 DA|61}} | 3.6 | 2.677 | 1190 | 852 | -28 |
{{mpl|2013 GW|141}} | 78.6 | 23.52 | 1130 | 1120 | -0.9 |
{{mpl|(87269) 2000 OO|67}} | 49.6 | 20.73 | 1120 | 1070 | -4.5 |
Comparison
File:Distant object orbits + Planet Nine.png, and other very distant objects along with the predicted orbit of Planet Nine. The three sednoids (pink) along with the red-colored extreme trans-Neptunian object (eTNO) orbits are suspected to be aligned with the hypothetical Planet Nine while the blue-colored eTNO orbits are anti-aligned. The highly elongated orbits colored brown include centaurs and damocloids with large aphelion distances over 200 AU.]]
{{clear}}
See also
- List of trans-Neptunian objects (numbered minor planets only)
- List of unnumbered trans-Neptunian objects
- List of artificial objects leaving the Solar System
- List of Solar System objects most distant from the Sun (then-year distance from the Sun)
- List of nearest stars and brown dwarfs
- List of the most distant astronomical objects
;About comets
- List of hyperbolic comets
- List of comets with no meaningful orbit
- List of near-parabolic comets
- List of periodic comets
- List of numbered comets
- Interstellar object
;Objects of interest
;Others
- {{annotated link|Oort cloud}}
- {{annotated link|Kuiper belt}}
- {{annotated link|Sednoid}}
- {{annotated link|Detached object}}
References
External links
- [https://www.sciencenews.org/article/distant-planet-may-lurk-far-beyond-neptune A distant planet may lurk far beyond Neptune]
- [http://www.space.com/28284-planet-x-worlds-beyond-pluto.html Mysterious Planet X May Really Lurk Undiscovered in Our Solar System]
{{Portal bar|Astronomy|Stars|Spaceflight|Outer space|Solar System}}