List of definite integrals
{{Short description|none}}
{{Dynamic list}}{{calculus|expanded=Integral calculus}}In mathematics, the definite integral
:
is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.
The fundamental theorem of calculus establishes the relationship between indefinite and definite integrals and introduces a technique for evaluating definite integrals.
If the interval is infinite the definite integral is called an improper integral and defined by using appropriate limiting procedures. for example:
:
A constant, such pi, that may be defined by the integral of an algebraic function over an algebraic domain is known as a period.
The following is a list of some of the most common or interesting definite integrals. For a list of indefinite integrals see List of indefinite integrals.
Definite integrals involving rational or irrational expressions
:
:
Definite integrals involving trigonometric functions
:
0 & \text{if } m\ne n \\ \\
\dfrac{\pi}{2} & \text{if } m=n
\end{cases}
\quad\text{for } m,n \text{ positive integers}
:
0 & \text{if } m\ne n \\ \\
\dfrac{\pi}{2} & \text{if } m=n
\end{cases}
\quad\text{for } m,n \text{ positive integers}
:
0 & \text{if } m+n \text{ even} \\ \\
\dfrac{2m}{m^{2}-n^{2}} & \text{if } m+n \text{ odd}
\end{cases}
\quad\text{for } m,n \text{ integers}.
:
:
:
:
:
:
:
\dfrac{\pi}{2} & \text{if } p>0 \\
\\
0 & \text{if } p=0 \\
\\
-\dfrac{\pi}{2} & \text {if } p<0
\end{cases} (see Dirichlet integral)
:
0 & \text{ if } q>p>0 \\
\\
\dfrac{\pi}{2}& \text{ if } 0 \\ \dfrac{\pi}{4} & \text{ if } p=q>0 \end{cases} : \dfrac{\pi p}{2}& \text{ if } 0
\\ \dfrac{\pi q}{2} & \text{ if } 0 \end{cases} : : : : : : : : : : : : : \dfrac{\pi}{a}\ln\left|1+a\right| & \text{if } |a|<1 \\ \\ \dfrac{\pi}{a} \ln\left|1+\dfrac{1}{a}\right| & \text{if } |a|>1 \end{cases} : : : : : : : : :
Definite integrals involving exponential functions
:
:
:
:
:
:
:
:
:
:
:
:
:
= \frac{2n-1}{2a} \int_0^\infty x^{2(n-1)} e^{-a x^2}\,dx
= \frac{(2n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}}
= \frac{(2n)!}{n! 2^{2n+1}} \sqrt{\frac{\pi}{a^{2n+1}}} \quad \text{for } a>0\ ,\ n=1,2,3\ldots (where !! is the double factorial)
:
:
= \frac {n} {a} \int_0^\infty x^{2n-1} e^{-a x^2}\,dx
= \frac{n!}{2 a^{n+1}} \quad \text{for } a>0\ ,\ n=0,1,2\ldots
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
Definite integrals involving logarithmic functions
:
:
:
:
:
:
:
:
Definite integrals involving hyperbolic functions
[[Frullani integral|Frullani integrals]]
See also
{{Portal|Mathematics}}
References
- {{cite journal |author-first1=Robert |author-last1=Reynolds |author-first2=Allan |author-last2=Stauffer |title = Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions |journal = Mathematics |year = 2020 |volume=8 |number = 687 |page=687 |doi = 10.3390/math8050687 |doi-access = free }}
- {{cite journal |author-first1=Robert |author-last1=Reynolds |author-first2=Allan |author-last2=Stauffer |title = A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function |journal = Mathematics |year = 2019 |volume=7 |number = 1148 |page=1148 |doi = 10.3390/math7121148 |doi-access = free }}
- {{cite journal |author-first1=Robert |author-last1=Reynolds |author-first2=Allan |author-last2=Stauffer |title = Definite Integral of Arctangent and Polylogarithmic Functions Expressed as a Series |journal = Mathematics |year = 2019 |volume=7 |number = 1099 |page=1099 |doi = 10.3390/math7111099 |doi-access = free }}
- {{cite journal |author-first1=Anton |author-last1=Winckler |title = Eigenschaften Einiger Bestimmten Integrale |journal = Hof, K.K., Ed. |year = 1861 }}
- {{cite book |author-first1=Murray R. |author-last1=Spiegel |author-first2=Seymour |author-last2=Lipschutz |author-first3=John |author-last3=Liu |title=Mathematical handbook of formulas and tables |year=2009 |publisher=McGraw-Hill |isbn=978-0071548557 |edition=3rd}}
- {{cite book |author-last=Zwillinger |author-first=Daniel |title=CRC standard mathematical tables and formulae |year=2003 |publisher=CRC Press |isbn=978-143983548-7 |edition=32nd}}
- {{AS ref}}
{{Lists of integrals}}
{{DEFAULTSORT:Definite integrals}}