List of electromagnetism equations#Definitions

{{short description|None}}

{{electromagnetism}}

This article summarizes equations in the theory of electromagnetism.

Definitions

File:Lorentz force particle.svg (of charge q) in motion (velocity v), used as the definition of the E field and B field.]]

Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by qm(Wb) = μ0 qm(Am).

=Initial quantities=

class="wikitable"
scope="col" width="200" | Quantity (common name/s)

! scope="col" width="125" | (Common) symbol/s

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Electric charge

| qe, q, Q

| C = As

| [I][T]

Monopole strength, magnetic charge

| qm, g, p

| Wb or Am

| [L]2[M][T]−2 [I]−1 (Wb)

[I][L] (Am)

=Electric quantities=

File:Universal charge distribution.svg , d is the dipole moment between two point charges, the volume density of these is the polarization density P. Position vector r is a point to calculate the electric field; r′ is a point in the charged object.]]

Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues.{{Citation needed|date=August 2024}}

Electric transport

class="wikitable"
scope="col" width="200" | Quantity (common name/s)

! scope="col" width="125" | (Common) symbol/s

! scope="col" width="200" | Defining equation

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Linear, surface, volumetric charge density

| λe for Linear, σe for surface, ρe for volume.

| q_e = \int \lambda_e \mathrm{d}\ell

q_e = \iint \sigma_e \mathrm{d} S

q_e = \iiint \rho_e \mathrm{d}V

| C mn, n = 1, 2, 3

| [I][T][L]n

Capacitance

| C

|C = {\mathrm{d}q\over\mathrm{d}V}\,\!

V = voltage, not volume.

| F = C V−1

| [I]2[T]4[L]−2[M]−1

Electric current

| I

| I = {\mathrm{d}q\over\mathrm{d}t} \,\!

| A

| [I]

Electric current density

| J

|I = \mathbf{J} \cdot \mathrm{d} \mathbf{S}

| A m−2

| [I][L]−2

Displacement current density

| Jd

| \mathbf{J}_\mathrm{d} = {\partial\mathbf{D}\over\partial t} = \varepsilon_0 \left ({\partial\mathbf{E}\over\partial t}\right) \,\!

| A m−2

| [I][L]−2

Convection current density

| Jc

| \mathbf{J}_\mathrm{c} = \rho \mathbf{v} \,\!

| A m−2

| [I][L]−2

Electric fields

class="wikitable"
scope="col" width="200" | Quantity (common name/s)

! scope="col" width="125" | (Common) symbol/s

! scope="col" width="200" | Defining equation

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Electric field, field strength, flux density, potential gradient

| E

| \mathbf{E} ={\mathbf{F}\over q}\,\!

| N C−1 = V m−1

| [M][L][T]−3[I]−1

Electric flux

| ΦE

|\Phi_E = \int_S \mathbf{E} \cdot \mathrm{d} \mathbf{A}\,\!

| N m2 C−1

| [M][L]3[T]−3[I]−1

Absolute permittivity;

| ε

| \varepsilon = \varepsilon_r \varepsilon_0\,\!

| F m−1

| [I]2 [T]4 [M]−1 [L]−3

Electric dipole moment

|| p

||\mathbf{p} = q\mathbf{a}\,\!

a = charge separation

directed from -ve to +ve charge

|| C m

|| [I][T][L]

Electric Polarization, polarization density

| P

|\mathbf{P} = {\mathrm{d}\langle\mathbf{p}\rangle\over\mathrm{d} V} \,\!

| C m−2

| [I][T][L]−2

Electric displacement field, flux density

| D

| \mathbf{D} = \varepsilon\mathbf{E} = \varepsilon_0 \mathbf{E} + \mathbf{P}\,

| C m−2

| [I][T][L]−2

Electric displacement flux

|| ΦD

||\Phi_D = \int_S \mathbf{D} \cdot \mathrm{d} \mathbf{A}\,\!

|| C

|| [I][T]

Absolute electric potential, EM scalar potential relative to point r_0 \,\!

Theoretical: r_0 = \infty \,\!

Practical: r_0 = R_\mathrm{earth} \,\! (Earth's radius)

| φ ,V

| V = -\frac{W_{\infty r }}{q} = -\frac{1}{q}\int_\infty^r \mathbf{F} \cdot \mathrm{d} \mathbf{r} = -\int_{r_1}^{r_2} \mathbf{E} \cdot \mathrm{d} \mathbf{r}\,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

Voltage, Electric potential difference

| ΔφV

|\Delta V = -\frac{\Delta W}{q} = -\frac{1}{q}\int_{r_1}^{r_2} \mathbf{F} \cdot \mathrm{d} \mathbf{r} = -\int_{r_1}^{r_2} \mathbf{E} \cdot \mathrm{d} \mathbf{r} \,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

=Magnetic quantities=

Magnetic transport

class="wikitable"
scope="col" width="100" | Quantity (common name/s)

! scope="col" width="100" | (Common) symbol/s

! scope="col" width="300" | Defining equation

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Linear, surface, volumetric pole density

| λm for Linear, σm for surface, ρm for volume.

| q_m = \int \lambda_m \mathrm{d}\ell

q_m = \iint \sigma_m \mathrm{d} S

q_m = \iiint \rho_m \mathrm{d}V

| Wb mn

A m(−n + 1),

n = 1, 2, 3

|[L]2[M][T]−2 [I]−1 (Wb)

[I][L] (Am)

Monopole current

| Im

| I_m = {\mathrm{d}q_m\over\mathrm{dt}} \,\!

| Wb s−1

A m s−1

|[L]2[M][T]−3 [I]−1 (Wb)

[I][L][T]−1 (Am)

Monopole current density

| Jm

| I = \iint \mathbf{J}_\mathrm{m} \cdot \mathrm{d} \mathbf{A}

| Wb s−1 m−2

A m−1 s−1

|[M][T]−3 [I]−1 (Wb)

[I][L]−1[T]−1 (Am)

Magnetic fields

class="wikitable"
scope="col" width="100" | Quantity (common name/s)

! scope="col" width="100" | (Common) symbol/s

! scope="col" width="300" | Defining equation

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Magnetic field, field strength, flux density, induction field

| B

| \mathbf{F} =q_e \left ( \mathbf{v}\times\mathbf{B} \right ) \,\!

| T = N A−1 m−1 = Wb m−2

| [M][T]−2[I]−1

Magnetic potential, EM vector potential

| A

| \mathbf{B} = \nabla \times \mathbf{A}

| T m = N A−1 = Wb m3

| [M][L][T]−2[I]−1

Magnetic flux

| ΦB

| \Phi_B = \int_S \mathbf{B} \cdot \mathrm{d} \mathbf{A}\,\!

| Wb = T m2

| [L]2[M][T]−2[I]−1

Magnetic permeability

| \mu \,\!

| \mu \ = \mu_r \,\mu_0 \,\!

| V·s·A−1·m−1 = N·A−2 = T·m·A−1 = Wb·A−1·m−1

| [M][L][T]−2[I]−2

Magnetic moment, magnetic dipole moment

| m, μB, Π

|

Two definitions are possible:

using pole strengths,

\mathbf{m} = q_m \mathbf{a}\,\!

using currents:

\mathbf{m} = NIA\mathbf{\hat{n}}\,\!

a = pole separation

N is the number of turns of conductor

| A m2

| [I][L]2

Magnetization

| M

|\mathbf{M} = {\mathrm{d} \langle\mathbf{m}\rangle\over\mathrm{d}V} \,\!

| A m−1

| [I] [L]−1

Magnetic field intensity, (AKA field strength)

| H

| Two definitions are possible:

most common:

\mathbf{B} = \mu \mathbf{H} = \mu_0 \left ( \mathbf{H} + \mathbf{M} \right ) \,

using pole strengths,{{cite book|title=Understanding Physics|edition=2nd |author1=M. Mansfield |author2=C. O'Sullivan |publisher=John Wiley & Sons|year=2011|isbn=978-0-470-74637-0}}

\mathbf{H} = {\mathbf{F}\over q_m} \,

| A m−1

| [I] [L]−1

Intensity of magnetization, magnetic polarization

| I, J

|\mathbf{I} = \mu_0 \mathbf{M} \,\!

| T = N A−1 m−1 = Wb m−2

| [M][T]−2[I]−1

Self Inductance

| L

| Two equivalent definitions are possible:

L = N\left ( {\mathrm{d}\Phi\over\mathrm{d} I}\right )\,\!

L\left({\mathrm{d} I\over\mathrm{d}t}\right) = -NV\,\!

| H = Wb A−1

| [L]2 [M] [T]−2 [I]−2

Mutual inductance

| M

| Again two equivalent definitions are possible:

M_1 = N\left ({\mathrm{d} \Phi_2\over\mathrm{d}I_1}\right)\,\!

M\left({\mathrm{d} I_2\over\mathrm{d}t}\right ) = -NV_1\,\!

1,2 subscripts refer to two conductors/inductors mutually inducing voltage/ linking magnetic flux through each other. They can be interchanged for the required conductor/inductor;

M_2 = N\left({\mathrm{d} \Phi_1\over\mathrm{d}I_2}\right)\,\!

M\left({\mathrm{d} I_1\over\mathrm{d}t} \right ) = -NV_2\,\!

| H = Wb A−1

| [L]2 [M] [T]−2 [I]−2

Gyromagnetic ratio (for charged particles in a magnetic field)

| γ

| \omega = \gamma B \,\!

| Hz T−1

| [M]−1[T][I]

=Electric circuits=

DC circuits, general definitions

{{main|Direct current}}

class="wikitable"
scope="col" width="100" | Quantity (common name/s)

! scope="col" width="100" | (Common) symbol/s

! scope="col" width="300" | Defining equation

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Terminal Voltage for

Power Supply

| Vter

|

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

Load Voltage for Circuit

|Vload

|

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

Internal resistance of power supply

| Rint

| R_\mathrm{int} = {V_\mathrm{ter}\over I} \,\!

| Ω = V A−1 = J s C−2

| [M][L]2 [T]−3 [I]−2

Load resistance of circuit

| Rext

| R_\mathrm{ext} = {V_\mathrm{load}\over I} \,\!

| Ω = V A−1 = J s C−2

| [M][L]2 [T]−3 [I]−2

Electromotive force (emf), voltage across entire circuit including power supply, external components and conductors

| E

| \mathcal{E} = V_\mathrm{ter} + V_\mathrm{load} \,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

AC circuits

{{main|Alternating current|Resonance}}

class="wikitable"
scope="col" width="100" | Quantity (common name/s)

! scope="col" width="100" | (Common) symbol/s

! scope="col" width="300" | Defining equation

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Resistive load voltage

| VR

| V_R = I_R R \,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

Capacitive load voltage

| VC

| V_C = I_C X_C\,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

Inductive load voltage

|VL

|V_L = I_L X_L\,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

Capacitive reactance

|XC

| X_C = \frac{1}{\omega_\mathrm{d} C} \,\!

| Ω−1 m−1

| [I]2 [T]3 [M]−2 [L]−2

Inductive reactance

|XL

| X_L = \omega_d L \,\!

| Ω−1 m−1

| [I]2 [T]3 [M]−2 [L]−2

AC electrical impedance

| Z

|V = I Z\,\!

Z = \sqrt{R^2 + \left ( X_L - X_C \right )^2 } \,\!

| Ω−1 m−1

| [I]2 [T]3 [M]−2 [L]−2

Phase constant

| δ, φ

|\tan\phi= \frac{X_L - X_C}{R}\,\!

|dimensionless

|dimensionless

AC peak current

| I0

|I_0 = I_\mathrm{rms} \sqrt{2}\,\!

| A

| [I]

AC root mean square current

|Irms

| I_\mathrm{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} \left [ I \left ( t \right ) \right ]^2 \mathrm{d} t} \,\!

| A

| [I]

AC peak voltage

|V0

| V_0 = V_\mathrm{rms} \sqrt{2} \,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

AC root mean square voltage

|Vrms

| V_\mathrm{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} \left [ V \left ( t \right ) \right ]^2 \mathrm{d} t} \,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

AC emf, root mean square

|\mathcal{E}_\mathrm{rms}, \sqrt{\langle \mathcal{E} \rangle} \,\!

|\mathcal{E}_\mathrm{rms}=\mathcal{E}_\mathrm{m}/\sqrt{2}\,\!

| V = J C−1

| [M] [L]2 [T]−3 [I]−1

AC average power

| \langle P \rangle \,\!

| \langle P \rangle =\mathcal{E}I_\mathrm{rms}\cos\phi\,\!

| W = J s−1

| [M] [L]2 [T]−3

Capacitive time constant

| τC

|\tau_C = RC\,\!

| s

| [T]

Inductive time constant

| τL

|\tau_L = {L\over R}\,\!

| s

| [T]

=Magnetic circuits=

{{Main|Magnetic circuits}}

class="wikitable"
scope="col" width="100" | Quantity (common name/s)

! scope="col" width="100" | (Common) symbol/s

! scope="col" width="300" | Defining equation

! scope="col" width="125" | SI units

! scope="col" width="100" | Dimension

Magnetomotive force, mmf

| F, \mathcal{F}, \mathcal{M}

| \mathcal{M} = NI

N = number of turns of conductor

| A

| [I]

Electromagnetism

=Electric fields=

File:Electrostatics_relation_triangle.svg

General Classical Equations

class="wikitable"
scope="col" width="200" | Physical situation

! scope="col" width="10" | Equations

Electric potential gradient and field

| \mathbf{E} = - \nabla V

\Delta V = -\int_{r_1}^{r_2} \mathbf{E} \cdot d\mathbf{r}\,\!

Point charge

| \mathbf E(\mathbf r) = {q\over 4\pi \varepsilon_0}{\hat\mathbf{r}\over{|\mathbf r

^2} = {q\over 4\pi \varepsilon_0}{\mathbf{r}\over
\mathbf r
^3}\,\!

|-

!At a point in a local array of point charges

| \mathbf E(\mathbf r) = {1\over4\pi\varepsilon_0} \sum_{i=1}^n q_i {\hat\mathbf r_i\over

\mathbf{r_i - r}
^2} = {1\over 4\pi\varepsilon_0} \sum_{i=1}^n q_i {\mathbf r_i\over
\mathbf{r_i - r}
^3}

|-

!At a point due to a continuum of charge

| \mathbf E(\mathbf r) = \frac{1}{4\pi\varepsilon_0} \iiint \, \rho(\mathbf r') {\mathbf r'\over

\mathbf r'
^3} \mathrm{d}^3|\mathbf r'|

|-

!Electrostatic torque and potential energy due to non-uniform fields and dipole moments

| \boldsymbol{\tau} = \int_V \mathrm{d} \mathbf{p} \times \mathbf{E}

U = - \int_V \mathrm{d} \mathbf{p} \cdot \mathbf{E}

|-

|}

=Magnetic fields and moments=

{{See also|Magnetic moment}}

File:Magnetostatics_relation_triangle.svg

General classical equations

class="wikitable"
scope="col" width="200" | Physical situation

! scope="col" width="10" | Equations

Magnetic potential, EM vector potential

| \mathbf{B} = \nabla \times \mathbf{A}

Due to a magnetic moment

| \mathbf{A} = \frac{\mu_0}{4\pi}\frac{\mathbf{m}\times\mathbf{r}}{\left | \mathbf{r} \right |^3}

\mathbf{B}({\mathbf{r}})=\nabla\times{\mathbf{A}}=\frac{\mu_{0}}{4\pi}\left(\frac{3\mathbf{r}(\mathbf{m}\cdot\mathbf{r})}{\left | \mathbf{r} \right |^{5}}-\frac{{\mathbf{m}}}{\left | \mathbf{r} \right |^{3}}\right)

Magnetic moment due to a current distribution

| \mathbf{m} = \frac{1}{2}\int_V \mathbf{r}\times\mathbf{J} \mathrm{d} V

Magnetostatic torque and potential energy due to non-uniform fields and dipole moments

| \boldsymbol{\tau} = \int_V \mathrm{d} \mathbf{m} \times \mathbf{B}

U = - \int_V \mathrm{d} \mathbf{m} \cdot \mathbf{B}

Electric circuits and electronics

Below N = number of conductors or circuit components. Subscript net refers to the equivalent and resultant property value.

class="wikitable"
scope="col" width="100" | Physical situation

! scope="col" width="250" | Nomenclature

! scope="col" width="10" | Series

! scope="col" width="10" | Parallel

Resistors and conductors

|{{plainlist}}

  • Ri = resistance of resistor or conductor i
  • Gi = conductance of resistor or conductor i

{{endplainlist}}

|R_\mathrm{net} = \sum_{i=1}^{N} R_i\,\!

{1\over G_\mathrm{net}} = \sum_{i=1}^{N} {1\over G_i}\,\!

| {1\over R_\mathrm{net}} = \sum_{i=1}^{N} {1\over R_i}\,\!

G_\mathrm{net} = \sum_{i=1}^{N} G_i \,\!

Charge, capacitors, currents

| {{plainlist}}

  • Ci = capacitance of capacitor i
  • qi = charge of charge carrier i

{{endplainlist}}

| q_\mathrm{net} = \sum_{i=1}^N q_i \,\!

{1\over C_\mathrm{net}} = \sum_{i=1}^N {1\over C_i} \,\!

I_\mathrm{net} = I_i \,\!

|q_\mathrm{net} = \sum_{i=1}^N q_i \,\!

C_\mathrm{net} = \sum_{i=1}^N C_i \,\!

I_\mathrm{net} = \sum_{i=1}^N I_i \,\!

Inductors

| {{plainlist}}

  • Li = self-inductance of inductor i
  • Lij = self-inductance element ij of L matrix
  • Mij = mutual inductance between inductors i and j

{{endplainlist}}

|L_\mathrm{net} = \sum_{i=1}^N L_i \,\!

|{1\over L_\mathrm{net}} = \sum_{i=1}^N {1\over L_i} \,\!

V_i = \sum_{j=1}^N L_{ij} \frac{\mathrm{d}I_j}{\mathrm{d}t} \,\!

class="wikitable"

! scope="col" width="100" | Circuit

! scope="col" width="200" | DC Circuit equations

! scope="col" width="200" | AC Circuit equations

|+Series circuit equations

RC circuits

|Circuit equation

R{\mathrm{d}q\over \mathrm{d}t} + {q\over C} = \mathcal{E}\,\!

Capacitor charge

q = C\mathcal{E}\left ( 1 - e^{-t/RC} \right )\,\!

Capacitor discharge

q = C\mathcal{E}e^{-t/RC}\,\!

|

RL circuits

|Circuit equation

L{\mathrm{d}I\over \mathrm{d}t}+RI=\mathcal{E}\,\!

Inductor current rise

I = \frac{\mathcal{E}}{R}\left ( 1-e^{-Rt/L}\right )\,\!

Inductor current fall

I=\frac{\mathcal{E}}{R}e^{-t/\tau_L}=I_0e^{-Rt/L}\,\!

|

LC circuits

|Circuit equation

L{\mathrm{d}^2q\over \mathrm{d}t^2} + {q\over C} = \mathcal{E}\,\!

|Circuit equation

L{\mathrm{d}^2q\over \mathrm{d}t^2} + {q\over C} = \mathcal{E} \sin\left(\omega_0 t + \phi \right) \,\!

Circuit resonant frequency

\omega_\mathrm{res} = {1\over\sqrt{LC}}\,\!

Circuit charge

q = q_0 \cos(\omega t + \phi)\,\!

Circuit current

I=-\omega q_0 \sin(\omega t + \phi)\,\!

Circuit electrical potential energy

U_E = {q^2\over2C} = {q_0^2\cos^2(\omega t + \phi)\over2C}\,\!

Circuit magnetic potential energy

U_B={q_0^2\sin^2(\omega t + \phi)\over2C}\,\!

RLC circuits

|Circuit equation

L{\mathrm{d}^2q\over \mathrm{d}t^2} + R{\mathrm{d}q\over \mathrm{d}t} + {q\over C} = \mathcal{E} \,\!

|Circuit equation

L{\mathrm{d}^2q\over \mathrm{d}t^2} + R{\mathrm{d}q\over \mathrm{d}t} + {q\over C} = \mathcal{E} \sin\left(\omega_0 t + \phi \right) \,\!

Circuit charge

q = q_0 eT^{-Rt/2L}\cos(\omega't+\phi)\,\!

See also

Footnotes

{{Reflist}}

Sources

  • {{cite book|author1=P.M. Whelan |author2=M.J. Hodgeson | title=Essential Principles of Physics| publisher=John Murray|edition=2nd| year=1978 | isbn=0-7195-3382-1}}
  • {{cite book| author=G. Woan| title=The Cambridge Handbook of Physics Formulas| url=https://archive.org/details/cambridgehandboo0000woan| url-access=registration| publisher=Cambridge University Press| year=2010| isbn=978-0-521-57507-2}}
  • {{cite book| author=A. Halpern| title=3000 Solved Problems in Physics, Schaum Series| publisher=Mc Graw Hill| year=1988| isbn=978-0-07-025734-4}}
  • {{cite book|pages=12–13|author1=R.G. Lerner|author1-link=Rita G. Lerner |author2=G.L. Trigg | title=Encyclopaedia of Physics| publisher=VHC Publishers, Hans Warlimont, Springer|edition=2nd| year=2005| isbn=978-0-07-025734-4}}
  • {{cite book| author=C.B. Parker| title=McGraw Hill Encyclopaedia of Physics| publisher=McGraw Hill| edition=2nd| year=1994| isbn=0-07-051400-3| url-access=registration| url=https://archive.org/details/mcgrawhillencycl1993park}}
  • {{cite book|author1=P.A. Tipler |author2=G. Mosca | title=Physics for Scientists and Engineers: With Modern Physics| publisher=W.H. Freeman and Co|edition=6th| year=2008| isbn=978-1-4292-0265-7}}
  • {{cite book|title=Analytical Mechanics|author1=L.N. Hand |author2=J.D. Finch |publisher=Cambridge University Press |year=2008|isbn=978-0-521-57572-0}}
  • {{cite book|title=Mechanics, Vibrations and Waves|author1=T.B. Arkill |author2=C.J. Millar |publisher=John Murray |year=1974|isbn=0-7195-2882-8}}
  • {{cite book|title=The Physics of Vibrations and Waves|edition=3rd|author=H.J. Pain|publisher=John Wiley & Sons |year=1983|isbn=0-471-90182-2}}
  • {{cite book|title=Dynamics and Relativity|author1=J.R. Forshaw |author2=A.G. Smith |publisher=Wiley |year=2009|isbn=978-0-470-01460-8}}
  • {{cite book|title=Electricity and Modern Physics |edition=2nd|author=G.A.G. Bennet|publisher=Edward Arnold (UK)|year=1974|isbn=0-7131-2459-8}}
  • {{cite book|title=Electromagnetism|url=https://archive.org/details/electromagnetism0000gran|url-access=registration|edition=2nd|author1=I.S. Grant |author2=W.R. Phillips |author3=Manchester Physics |publisher=John Wiley & Sons|year=2008|isbn=978-0-471-92712-9}}
  • {{cite book|title=Introduction to Electrodynamics|edition=3rd |author=D.J. Griffiths|publisher=Pearson Education, Dorling Kindersley |year=2007|isbn=978-81-7758-293-2}}

Further reading

  • {{cite book|title=Physics with Modern Applications|author=L.H. Greenberg|publisher=Holt-Saunders International W.B. Saunders and Co|year=1978|isbn=0-7216-4247-0|url-access=registration|url=https://archive.org/details/physicswithmoder0000gree}}
  • {{cite book|title=Principles of Physics|author1=J.B. Marion |author2=W.F. Hornyak |publisher=Holt-Saunders International Saunders College|year=1984|isbn=4-8337-0195-2}}
  • {{cite book|title=Concepts of Modern Physics|edition=4th|author=A. Beiser|publisher=McGraw-Hill (International)|year=1987|isbn=0-07-100144-1}}
  • {{cite book|title=University Physics – With Modern Physics|edition=12th|author1=H.D. Young |author2=R.A. Freedman |publisher=Addison-Wesley (Pearson International)|year=2008|isbn=978-0-321-50130-1}}

{{SI units navbox}}

Category:Physical quantities

Category:SI units

electromagnetism

Category:Electromagnetism