List of integer sequences
{{short description|None}}
This is a list of notable integer sequences with links to their entries in the On-Line Encyclopedia of Integer Sequences.
General
class="wikitable sortable"
! Name !! First elements !! Short description !! OEIS |
Kolakoski sequence
| 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ... | The {{math|n}}th term describes the length of the {{math|n}}th run | {{OEIS link|A000002}} |
Euler's totient function {{math|φ(n)}}
| 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ... | {{math|φ(n)}} is the number of positive integers not greater than {{math|n}} that are coprime with {{math|n}}. | {{OEIS link|A000010}} |
Lucas numbers {{math|L(n)}}
| 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... | {{math|L(n) {{=}} L(n − 1) + L(n − 2)}} for {{math|n ≥ 2}}, with {{math|L(0) {{=}} 2}} and {{math|L(1) {{=}} 1}}. | {{OEIS link|A000032}} |
Prime numbers {{math|pn}}
| 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... | The prime numbers {{math|pn}}, with {{math|n ≥ 1}}. A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. | {{OEIS link|A000040}} |
Partition numbers {{math|Pn}} | 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ... | The partition numbers, number of additive breakdowns of n. | {{OEIS link|A000041}} |
Fibonacci numbers {{math|F(n)}}
| 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... | {{math|F(n) {{=}} F(n − 1) + F(n − 2)}} for {{math|n ≥ 2}}, with {{math|F(0) {{=}} 0}} and {{math|F(1) {{=}} 1}}. | {{OEIS link|A000045}} |
Sylvester's sequence
| 2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, ... | for {{math|n ≥ 1}}, with {{math|a(0) {{=}} 2}}. | {{OEIS link|A000058}} |
Tribonacci numbers
| 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, ... | {{math|T(n) {{=}} T(n − 1) + T(n − 2) + T(n − 3)}} for {{math|n ≥ 3}}, with {{math|T(0) {{=}} 0 and T(1) {{=}} T(2) {{=}} 1}}. | {{OEIS link|A000073}} |
Powers of 2
| 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ... | Powers of 2: 2n for n ≥ 0 | {{OEIS link|A000079}} |
Polyominoes
| 1, 1, 1, 2, 5, 12, 35, 108, 369, ... | The number of free polyominoes with {{math|n}} cells. | {{OEIS link|A000105}} |
Catalan numbers {{math|Cn}}
| 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ... | | {{OEIS link|A000108}} |
Bell numbers {{math|Bn}}
| 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, ... | {{math|Bn}} is the number of partitions of a set with {{math|n}} elements. | {{OEIS link|A000110}} |
Euler zigzag numbers {{math|En}}
| 1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, ... | {{math|En}} is the number of linear extensions of the "zig-zag" poset. | {{OEIS link|A000111}} |
Lazy caterer's sequence
| 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, ... | The maximal number of pieces formed when slicing a pancake with {{math|n}} cuts. | {{OEIS link|A000124}} |
Pell numbers {{math|Pn}}
| 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ... | {{math|a(n) {{=}} 2a(n − 1) + a(n − 2)}} for {{math|n ≥ 2}}, with {{math|a(0) {{=}} 0, a(1) {{=}} 1}}. | {{OEIS link|A000129}} |
Factorials {{math|n!}}
| 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, ... | for {{math|n ≥ 1}}, with {{math|0! {{=}} 1}} (empty product). | {{OEIS link|A000142}} |
Derangements
| 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, ... | Number of permutations of n elements with no fixed points. | {{OEIS link|A000166}} |
Divisor function {{math|σ(n)}}
| 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, ... | {{math|σ(n) :{{=}} σ1(n)}} is the sum of divisors of a positive integer {{math|n}}. | {{OEIS link|A000203}} |
Fermat numbers {{math|Fn}}
| 3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457, ... | {{math|Fn {{=}} 22n + 1}} for {{math|n ≥ 0}}. | {{OEIS link|A000215}} |
Polytrees
| 1, 1, 3, 8, 27, 91, 350, 1376, 5743, 24635, 108968, ... | Number of oriented trees with n nodes. | {{OEIS link|A000238}} |
Perfect numbers
| 6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, ... | {{math|n}} is equal to the sum {{math|s(n) {{=}} σ(n) − n}} of the proper divisors of {{math|n}}. | {{OEIS link|A000396}} |
Ramanujan tau function
| 1, −24, 252, −1472, 4830, −6048, −16744, 84480, −113643, ... | Values of the Ramanujan tau function, {{math|τ(n)}} at n = 1, 2, 3, ... | {{OEIS link|A000594}} |
Landau's function
| 1, 1, 2, 3, 4, 6, 6, 12, 15, 20, ... | The largest order of permutation of {{math|n}} elements. | {{OEIS link|A000793}} |
Narayana's cows
| 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, ... | The number of cows each year if each cow has one cow a year beginning its fourth year. | {{OEIS link|A000930}} |
Padovan sequence
| 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, ... | {{math|P(n) {{=}} P(n − 2) + P(n − 3)}} for {{math|n ≥ 3}}, with {{math|P(0) {{=}} P(1) {{=}} P(2) {{=}} 1}}. | {{OEIS link|A000931}} |
Euclid–Mullin sequence
| 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, ... | {{math|a(1) {{=}} 2; a(n + 1)}} is smallest prime factor of {{math|a(1) a(2) ⋯ a(n) + 1}}. | {{OEIS link|A000945}} |
Lucky numbers
| 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, ... | A natural number in a set that is filtered by a sieve. | {{OEIS link|A000959}} |
Prime powers
| 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, ... | Positive integer powers of prime numbers | {{OEIS link|A000961}} |
Central binomial coefficients
| 1, 2, 6, 20, 70, 252, 924, ... | , numbers in the center of even rows of Pascal's triangle | {{OEIS link|A000984}} |
Motzkin numbers
| 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, ... | The number of ways of drawing any number of nonintersecting chords joining {{math|n}} (labeled) points on a circle. | {{OEIS link|A001006}} |
Jordan–Pólya numbers
| 1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, ... | Numbers that are the product of factorials. | {{OEIS link|A001013}} |
Jacobsthal numbers
| 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ... | {{math|a(n) {{=}} a(n − 1) + 2a(n − 2)}} for {{math|n ≥ 2}}, with {{math|a(0) {{=}} 0, a(1) {{=}} 1}}. | {{OEIS link|A001045}} |
Sum of proper divisors {{math|s(n)}}
| 0, 1, 1, 3, 1, 6, 1, 7, 4, 8, ... | {{math|s(n) {{=}} σ(n) − n}} is the sum of the proper divisors of the positive integer {{math|n}}. | {{OEIS link|A001065}} |
Wedderburn–Etherington numbers
| 0, 1, 1, 1, 2, 3, 6, 11, 23, 46, ... | The number of binary rooted trees (every node has out-degree 0 or 2) with {{math|n}} endpoints (and {{math|2n − 1}} nodes in all). | {{OEIS link|A001190}} |
Gould's sequence
| 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, ... | Number of odd entries in row n of Pascal's triangle. | {{OEIS link|A001316}} |
Semiprimes
| 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, ... | Products of two primes, not necessarily distinct. | {{OEIS link|A001358}} |
Golomb sequence
| 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, ... | {{math|a(n)}} is the number of times {{math|n}} occurs, starting with {{math|a(1) {{=}} 1}}. | {{OEIS link|A001462}} |
Perrin numbers {{math|Pn}}
| 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, ... | {{math|P(n) {{=}} P(n − 2) + P(n − 3)}} for {{math|n ≥ 3}}, with {{math|P(0) {{=}} 3, P(1) {{=}} 0, P(2) {{=}} 2}}. | {{OEIS link|A001608}} |
Sorting number
| 0, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33, 37, 41, 45, 49, ... | Used in the analysis of comparison sorts. | {{OEIS link|A001855}} |
Cullen numbers {{math|Cn}}
| 1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497, ... | {{math|Cn {{=}} n⋅2n + 1}}, with {{math|n ≥ 0}}. | {{OEIS link|A002064}} |
Primorials {{math|pn#}}
| 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, ... | {{math|pn#}}, the product of the first {{math|n}} primes. | {{OEIS link|A002110}} |
Highly composite numbers
| 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, ... | A positive integer with more divisors than any smaller positive integer. | {{OEIS link|A002182}} |
Superior highly composite numbers
| 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, ... | A positive integer {{math|n}} for which there is an {{math|e > 0}} such that {{math| {{sfrac|d(n)|ne}} ≥ {{sfrac|d(k)|ke}} }} for all {{math|k > 1}}. | {{OEIS link|A002201}} |
Pronic numbers
| 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, ... | {{math|a(n) {{=}} 2t(n) {{=}} n(n + 1)}}, with {{math|n ≥ 0}} where {{math|t(n)}} are the triangular numbers. | {{OEIS link|A002378}} |
Markov numbers
| 1, 2, 5, 13, 29, 34, 89, 169, 194, ... | Positive integer solutions of {{math|x2 + y2 + z2 {{=}} 3xyz}}. | {{OEIS link|A002559}} |
Composite numbers
| 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, ... | The numbers {{math|n}} of the form {{math|xy}} for {{math|x > 1}} and {{math|y > 1}}. | {{OEIS link|A002808}} |
Ulam number
| 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, ... | {{math|a(1) {{=}} 1; a(2) {{=}} 2;}} for {{math|n > 2, a(n)}} is least number {{math| > a(n − 1)}} which is a unique sum of two distinct earlier terms; semiperfect. | {{OEIS link|A002858}} |
Prime knots
| 0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, ... | The number of prime knots with n crossings. | {{OEIS link|A002863}} |
Carmichael numbers
| 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, ... | Composite numbers {{math|n}} such that {{math|an − 1 ≡ 1 (mod n)}} if {{math|a}} is coprime with {{math|n}}. | {{OEIS link|A002997}} |
Woodall numbers
| 1, 7, 23, 63, 159, 383, 895, 2047, 4607, ... | {{math|n⋅2n − 1}}, with {{math|n ≥ 1}}. | {{OEIS link|A003261}} |
Arithmetic numbers
| 1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, ... | An integer for which the average of its positive divisors is also an integer. | {{OEIS link|A003601}} |
Colossally abundant numbers
| 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, ... | A number n is colossally abundant if there is an {{math|ε > 0}} such that for all {{math|k > 1}}, : where {{mvar|σ}} denotes the sum-of-divisors function. | {{OEIS link|A004490}} |
Alcuin's sequence
| 0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, ... | Number of triangles with integer sides and perimeter {{math|n}}. | {{OEIS link|A005044}} |
Deficient numbers
| 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, ... | Positive integers {{math|n}} such that {{math|σ(n) < 2n}}. | {{OEIS link|A005100}} |
Abundant numbers
| 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, ... | Positive integers {{math|n}} such that {{math|σ(n) > 2n}}. | {{OEIS link|A005101}} |
Untouchable numbers
| 2, 5, 52, 88, 96, 120, 124, 146, 162, 188, ... | Cannot be expressed as the sum of all the proper divisors of any positive integer. | {{OEIS link|A005114}} |
Recamán's sequence
| 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... | "subtract if possible, otherwise add": a(0) = 0; for n > 0, a(n) = a(n − 1) − n if that number is positive and not already in the sequence, otherwise a(n) = a(n − 1) + n, whether or not that number is already in the sequence. | {{OEIS link|A005132}} |
Look-and-say sequence
| 1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, 13211311123113112211, ... | A = 'frequency' followed by 'digit'-indication. | {{OEIS link|A005150}} |
Practical numbers
| 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, ... | All smaller positive integers can be represented as sums of distinct factors of the number. | {{OEIS link|A005153}} |
Alternating factorial
| 1, 1, 5, 19, 101, 619, 4421, 35899, 326981, 3301819, 36614981, 442386619, 5784634181, 81393657019, ... | | {{OEIS link|A005165}} |
Fortunate numbers
| 3, 5, 7, 13, 23, 17, 19, 23, 37, 61, ... | The smallest integer {{math|m > 1}} such that {{math|pn# + m}} is a prime number, where the primorial {{math|pn#}} is the product of the first {{math|n}} prime numbers. | {{OEIS link|A005235}} |
Semiperfect numbers
| 6, 12, 18, 20, 24, 28, 30, 36, 40, 42, ... | A natural number {{math|n}} that is equal to the sum of all or some of its proper divisors. | {{OEIS link|A005835}} |
Magic constants
| 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, 2056, ... | Sum of numbers in any row, column, or diagonal of a magic square of order {{math|n ≥ 3}}. | {{OEIS link|A006003}} |
Weird numbers
| 70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792, ... | A natural number that is abundant but not semiperfect. | {{OEIS link|A006037}} |
Farey sequence numerators
| 0, 1, 0, 1, 1, 0, 1, 1, 2, 1, ... | | {{OEIS link|A006842}} |
Farey sequence denominators
| 1, 1, 1, 2, 1, 1, 3, 2, 3, 1, ... | | {{OEIS link|A006843}} |
Euclid numbers
| 2, 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871, ... | {{math|pn# + 1}}, i.e. {{math|1 +}} product of first {{math|n}} consecutive primes. | {{OEIS link|A006862}} |
Kaprekar numbers
| 1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, ... | {{math|X2 {{=}} Abn + B}}, where {{math|0 < B < bn}} and {{math|X {{=}} A + B}}. | {{OEIS link|A006886}} |
Sphenic numbers
| 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, ... | Products of 3 distinct primes. | {{OEIS link|A007304}} |
Giuga numbers
| 30, 858, 1722, 66198, 2214408306, ... |Composite numbers so that for each of its distinct prime factors pi we have . | {{OEIS link|A007850}} |
Radical of an integer
| 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, ... | The radical of a positive integer {{math|n}} is the product of the distinct prime numbers dividing {{math|n}}. | {{OEIS link|A007947}} |
Thue–Morse sequence
| 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, ... | | {{OEIS link|A010060}} |
Regular paperfolding sequence
| 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, ... | At each stage an alternating sequence of 1s and 0s is inserted between the terms of the previous sequence. | {{OEIS link|A014577}} |
Blum integers
| 21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, ... | Numbers of the form {{math|pq}} where {{mvar|p}} and {{mvar|q}} are distinct primes congruent to {{math|3 (mod 4)}}. | {{OEIS link|A016105}} |
Magic numbers
| 2, 8, 20, 28, 50, 82, 126, ... | A number of nucleons (either protons or neutrons) such that they are arranged into complete shells within the atomic nucleus. | {{OEIS link|A018226}} |
Superperfect numbers
| 2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056, ... | Positive integers {{math|n}} for which {{math|σ2(n) {{=}} σ(σ(n)) {{=}} 2n.}} | {{OEIS link|A019279}} |
Bernoulli numbers {{math|Bn}}
| 1, −1, 1, 0, −1, 0, 1, 0, −1, 0, 5, 0, −691, 0, 7, 0, −3617, 0, 43867, 0, ... | | {{OEIS link|A027641}} |
Hyperperfect numbers
| 6, 21, 28, 301, 325, 496, 697, ... | {{math|k}}-hyperperfect numbers, i.e. {{math|n}} for which the equality {{math|n {{=}} 1 + k (σ(n) − n − 1)}} holds. | {{OEIS link|A034897}} |
Achilles numbers
| 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, ... | Positive integers which are powerful but imperfect. | {{OEIS link|A052486}} |
Primary pseudoperfect numbers
| 2, 6, 42, 1806, 47058, 2214502422, 52495396602, ... | Satisfies a certain Egyptian fraction. | {{OEIS link|A054377}} |
Erdős–Woods numbers
| 16, 22, 34, 36, 46, 56, 64, 66, 70, 76, 78, 86, 88, ... | The length of an interval of consecutive integers with property that every element has a factor in common with one of the endpoints. | {{OEIS link|A059756}} |
Sierpinski numbers
| 78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909, ... | Odd {{math|k}} for which {{math| { k⋅2n + 1 : n ∈ } }} consists only of composite numbers. | {{OEIS link|A076336}} |
Riesel numbers
| 509203, 762701, 777149, 790841, 992077, ... | Odd {{math|k}} for which {{math| { k⋅2n − 1 : n ∈ } }} consists only of composite numbers. | {{OEIS link|A076337}} |
Baum–Sweet sequence
| 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, ... | {{math|a(n) {{=}} 1}} if the binary representation of {{math|n}} contains no block of consecutive zeros of odd length; otherwise {{math|a(n) {{=}} 0}}. | {{OEIS link|A086747}} |
Gijswijt's sequence
| 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, ... | The {{math|n}}th term counts the maximal number of repeated blocks at the end of the subsequence from {{math|1}} to {{math|n−1}} | {{OEIS link|A090822}} |
Carol numbers
| −1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527, ... | | {{OEIS link|A093112}} |
Juggler sequence
| 0, 1, 1, 5, 2, 11, 2, 18, 2, 27, ... | If {{math|n ≡ 0 (mod 2)}} then {{math|⌊{{sqrt|n}}⌋}} else {{math|⌊n3/2⌋}}. | {{OEIS link|A094683}} |
Highly totient numbers
| 1, 2, 4, 8, 12, 24, 48, 72, 144, 240, ... | Each number {{mvar|k}} on this list has more solutions to the equation {{math|φ(x) {{=}} k}} than any preceding {{math|k}}. | {{OEIS link|A097942}} |
Euler numbers
| 1, 0, −1, 0, 5, 0, −61, 0, 1385, 0, ... | | {{OEIS link|A122045}} |
Polite numbers
| 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ... | A positive integer that can be written as the sum of two or more consecutive positive integers. | {{OEIS link|A138591}} |
Erdős–Nicolas numbers
| 24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328, ... | A number {{mvar|n}} such that there exists another number {{mvar|m}} and | {{OEIS link|A194472}} |
Solution to Stepping Stone Puzzle
| 1, 16, 28, 38, 49, 60, ... | The maximal value {{math|a(n)}} of the stepping stone puzzle | {{OEIS link|A337663}} |
Figurate numbers
{{Main|Figurate number}}
class="wikitable sortable"
! Name !! First elements !! Short description !! OEIS |
Natural numbers
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... | The natural numbers (positive integers) {{math|n ∈ }}. | {{OEIS link|A000027}} |
Triangular numbers {{math|t(n)}}
| 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ... | {{math|t(n) {{=}} C(n + 1, 2) {{=}} {{sfrac|n(n + 1)|2}} {{=}} 1 + 2 + ... + n}} for {{math|n ≥ 1}}, with {{math|t(0) {{=}} 0}} (empty sum). | {{OEIS link|A000217}} |
Square numbers {{math|n2}}
| 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, ... | {{math|n2 {{=}} n × n}} | {{OEIS link|A000290}} |
Tetrahedral numbers {{math|T(n)}}
| 0, 1, 4, 10, 20, 35, 56, 84, 120, 165, ... | {{math|T(n)}} is the sum of the first {{math|n}} triangular numbers, with {{math|T(0) {{=}} 0}} (empty sum). | {{OEIS link|A000292}} |
Square pyramidal numbers
| 0, 1, 5, 14, 30, 55, 91, 140, 204, 285, ... | {{math| {{sfrac|n(n + 1)(2n + 1)|6}} }}: The number of stacked spheres in a pyramid with a square base. | {{OEIS link|A000330}} |
Cube numbers {{math|n3}}
| 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, ... | {{math|n3 {{=}} n × n × n}} | {{OEIS link|A000578}} |
Fifth powers
| 0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000, ... | {{math|size=120%|1=n5}} | {{OEIS link|A000584}} |
Star numbers
| 1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, ... | Sn = 6n(n − 1) + 1. | {{OEIS link|A003154}} |
Stella octangula numbers
| 0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, ... | Stella octangula numbers: {{math|n(2n2 − 1)}}, with {{math|n ≥ 0}}. | {{OEIS link|A007588}} |
Types of primes
{{Main|List of prime numbers}}
class="wikitable sortable"
! Name !! First elements !! Short description !! OEIS |
Mersenne prime exponents
| 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, ... | Primes {{math|p}} such that {{math|2p − 1}} is prime. | {{OEIS link|A000043}} |
Mersenne primes
| 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, ... | {{math|2p − 1}} is prime, where {{math|p}} is a prime. | {{OEIS link|A000668}} |
Wagstaff primes
| 3, 11, 43, 683, 2731, 43691, ... | A prime number p of the form where q is an odd prime. | {{OEIS link|A000979}} |
Wieferich primes
| 1093, 3511 | | Primes satisfying {{math|2p−1 ≡ 1 (mod p2)}}. | {{OEIS link|A001220}} |
Sophie Germain primes
| 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, ... | A prime number {{math|p}} such that {{math|2p + 1}} is also prime. | {{OEIS link|A005384}} |
Wilson primes
| 5, 13, 563 | | Primes satisfying {{math|(p−1)! ≡ −1 (mod p2)}}. | {{OEIS link|A007540}} |
Happy numbers
| 1, 7, 10, 13, 19, 23, 28, 31, 32, 44, ... | The numbers whose trajectory under iteration of sum of squares of digits map includes {{math|1}}. | {{OEIS link|A007770}} |
Factorial primes
| 2, 3, 5, 7, 23, 719, 5039, 39916801, ... | A prime number that is one less or one more than a factorial (all factorials > 1 are even). | {{OEIS link|A088054}} |
Wolstenholme primes
| 16843, 2124679 | Primes satisfying . | {{OEIS link|A088164}} |
Ramanujan primes
| 2, 11, 17, 29, 41, 47, 59, 67, ... | The {{math|n}}th Ramanujan prime is the least integer {{math|Rn}} for which {{math|π(x) − π(x/2) ≥ n}}, for all {{math|x ≥ Rn}}. | {{OEIS link|A104272}} |
Base-dependent
{{Main category|Base-dependent integer sequences}}
class="wikitable sortable"
! Name !! First elements !! Short description !! OEIS |
Aronson's sequence
| 1, 4, 11, 16, 24, 29, 33, 35, 39, 45, ... | "t" is the first, fourth, eleventh, ... letter in this sentence, not counting spaces or commas. | {{OEIS link|A005224}} |
Palindromic numbers
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, ... | A number that remains the same when its digits are reversed. | {{OEIS link|A002113}} |
Permutable primes
| 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, ... | The numbers for which every permutation of digits is a prime. | {{OEIS link|A003459}} |
Harshad numbers in base 10
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, ... | A Harshad number in base 10 is an integer that is divisible by the sum of its digits (when written in base 10). | {{OEIS link|A005349}} |
Factorions
| 1, 2, 145, 40585, ... | A natural number that equals the sum of the factorials of its decimal digits. | {{OEIS link|A014080}} |
Circular primes
| 2, 3, 5, 7, 11, 13, 17, 37, 79, 113, ... | The numbers which remain prime under cyclic shifts of digits. | {{OEIS link|A016114}} |
Home prime
| 1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, ... | For {{math|n ≥ 2, a(n)}} is the prime that is finally reached when you start with {{math|n}}, concatenate its prime factors (A037276) and repeat until a prime is reached; {{math|a(n) {{=}} −1}} if no prime is ever reached. | {{OEIS link|A037274}} |
Undulating numbers
| 101, 121, 131, 141, 151, 161, 171, 181, 191, 202, ... | A number that has the digit form {{math|ababab}}. | {{OEIS link|A046075}} |
Equidigital numbers
| 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, ... | A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. | {{OEIS link|A046758}} |
Extravagant numbers
| 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... | A number that has fewer digits than the number of digits in its prime factorization (including exponents). | {{OEIS link|A046760}} |
Pandigital numbers
| 1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689, 1023457698, 1023457869, 1023457896, ... | Numbers containing the digits {{math|0–9}} such that each digit appears exactly once. | {{OEIS link|A050278}} |
References
- [http://oeis.org/wiki/Index_to_OEIS:_Section_Cor#core OEIS core sequences]
External links
- [http://oeis.org/wiki/Index_to_OEIS Index to OEIS]
{{Series (mathematics)}}
{{DEFAULTSORT:OEIS sequences}}