Ramanujan tau function

{{Short description|Function studied by Ramanujan}}

[[Image:Absolute Tau function for x up to 16,000 with logarithmic scale.JPG|thumbnail|upright=1.64|Values of |\tau(n)|

for n<16,000 with a logarithmic scale. The blue line picks only the values of n that are multiples of 121.]]

The Ramanujan tau function, studied by {{harvs|txt|authorlink=Srinivasa Ramanujan|last=Ramanujan|year=1916}}, is the function

\tau : \mathbb{N}\to\mathbb{Z} defined by the following identity:

:\sum_{n\geq 1}\tau(n)q^n=q\prod_{n\geq 1}\left(1-q^n\right)^{24} = q\phi(q)^{24} = \eta(z)^{24}=\Delta(z),

where q=\exp(2\pi iz) with \mathrm{Im}(z)>0, \phi is the Euler function, \eta is the Dedekind eta function, and the function \Delta(z) is a holomorphic cusp form of weight 12 and level 1, known as the discriminant modular form (some authors, notably Apostol, write \Delta/(2\pi)^{12} instead of \Delta). It appears in connection to an "error term" involved in counting the number of ways of expressing an integer as a sum of 24 squares. A formula due to Ian G. Macdonald was given in {{harvtxt|Dyson|1972}}.

Values

The first few values of the tau function are given in the following table {{OEIS|id=A000594}}:

class="wikitable" style="text-align:center"
n

|1||2||3||4||5||6||7||8||9||10||11||12||13||14||15||16

\tau(n)

|1||−24||252||−1472||4830||−6048||−16744||84480||−113643||−115920||534612||−370944||−577738||401856||1217160||987136

Calculating this function on an odd square number (i.e. a centered octagonal number) yields an odd number, whereas for any other number the function yields an even number.{{Cite OEIS|A016754|name=Odd squares: (2n-1)^2. Also centered octagonal numbers.}}

Ramanujan's conjectures

{{harvtxt|Ramanujan|1916}} observed, but did not prove, the following three properties of \tau(n):

  • \tau(mn)=\tau(m)\tau(n) if \gcd(m,n)=1 (meaning that \tau(n) is a multiplicative function)
  • \tau(p^{r+1})=\tau(p)\tau(p^r)-p^{11}\tau(p^{r-1}) for p prime and r>0.
  • |\tau(p)|\leq 2p^{11/2} for all primes p.

The first two properties were proved by {{harvtxt|Mordell|1917}} and the third one, called the Ramanujan conjecture, was proved by Deligne in 1974 as a consequence of his proof of the Weil conjectures (specifically, he deduced it by applying them to a Kuga-Sato variety).

Congruences for the tau function

For k\in\mathbb{Z} and n\in\mathbb{N}, the Divisor function \sigma_k(n) is the sum of the kth powers of the divisors of n. The tau function satisfies several congruence relations; many of them can be expressed in terms of \sigma_k(n). Here are some:Page 4 of {{harvnb|Swinnerton-Dyer|1973}}

  1. \tau(n)\equiv\sigma_{11}(n)\ \bmod\ 2^{11}\text{ for }n\equiv 1\ \bmod\ 8Due to {{harvnb|Kolberg|1962}}
  2. \tau(n)\equiv 1217 \sigma_{11}(n)\ \bmod\ 2^{13}\text{ for } n\equiv 3\ \bmod\ 8
  3. \tau(n)\equiv 1537 \sigma_{11}(n)\ \bmod\ 2^{12}\text{ for }n\equiv 5\ \bmod\ 8
  4. \tau(n)\equiv 705 \sigma_{11}(n)\ \bmod\ 2^{14}\text{ for }n\equiv 7\ \bmod\ 8
  5. \tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{6}\text{ for }n\equiv 1\ \bmod\ 3Due to {{harvnb|Ashworth|1968}}
  6. \tau(n)\equiv n^{-610}\sigma_{1231}(n)\ \bmod\ 3^{7}\text{ for }n\equiv 2\ \bmod\ 3
  7. \tau(n)\equiv n^{-30}\sigma_{71}(n)\ \bmod\ 5^{3}\text{ for }n\not\equiv 0\ \bmod\ 5Due to Lahivi
  8. \tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7Due to D. H. Lehmer
  9. \tau(n)\equiv n\sigma_{9}(n)\ \bmod\ 7^2\text{ for }n\equiv 3,5,6\ \bmod\ 7
  10. \tau(n)\equiv\sigma_{11}(n)\ \bmod\ 691.Due to {{harvnb|Ramanujan|1916}}

For p\neq 23 prime, we haveDue to {{harvnb|Wilton|1930}}

  1. \tau(p)\equiv 0\ \bmod\ 23\text{ if }\left(\frac{p}{23}\right)=-1

  2. \tau(p)\equiv \sigma_{11}(p)\ \bmod\ 23^2\text{ if } p\text{ is of the form } a^2+23b^2Due to J.-P. Serre 1968, Section 4.5

  3. \tau(p)\equiv -1\ \bmod\ 23\text{ otherwise}.

Explicit formula

In 1975 Douglas Niebur proved an explicit formula for the Ramanujan tau function:{{Cite journal |last=Niebur |first=Douglas |date=September 1975 |title=A formula for Ramanujan's \tau-function |journal=Illinois Journal of Mathematics |volume=19 |issue=3 |pages=448–449 |doi=10.1215/ijm/1256050746 |issn=0019-2082|doi-access=free }}

:\tau(n)=n^4\sigma(n)-24\sum_{i=1}^{n-1}i^2(35i^2-52in+18n^2)\sigma(i)\sigma(n-i).

where \sigma(n) is the sum of the positive divisors of n.

Conjectures on <math>\tau(n)</math>

Suppose that f is a weight-k integer newform and the Fourier coefficients a(n) are integers. Consider the problem:

: Given that f does not have complex multiplication, do almost all primes p have the property that a(p)\not\equiv 0\pmod{p} ?

Indeed, most primes should have this property, and hence they are called ordinary. Despite the big advances by Deligne and Serre on Galois representations, which determine a(n)\pmod{p} for n coprime to p, it is unclear how to compute a(p)\pmod{p}. The only theorem in this regard is Elkies' famous result for modular elliptic curves, which guarantees that there are infinitely many primes p such that a(p)=0, which thus are congruent to 0 modulo p. There are no known examples of non-CM f with weight greater than 2 for which a(p)\not\equiv 0\pmod{p} for infinitely many primes p (although it should be true for almost all p. There are also no known examples with a(p)\equiv 0 \pmod{p} for infinitely many p. Some researchers had begun to doubt whether a(p)\equiv 0 \pmod{p} for infinitely many p. As evidence, many provided Ramanujan's \tau(p) (case of weight 12). The only solutions up to 10^{10} to the equation \tau(p)\equiv 0\pmod{p} are 2, 3, 5, 7, 2411, and {{val|7758337633}} {{OEIS|A007659}}.{{cite journal |author=N. Lygeros and O. Rozier |year=2010 |title=A new solution for the equation \tau(p)\equiv 0 \pmod{p} |journal=Journal of Integer Sequences |volume=13 |pages=Article 10.7.4 |url=https://cs.uwaterloo.ca/journals/JIS/VOL13/Lygeros/lygeros5.pdf}}

{{harvtxt|Lehmer|1947}} conjectured that \tau(n)\neq 0 for all n, an assertion sometimes known as Lehmer's conjecture. Lehmer verified the conjecture for n up to {{val|214928639999}} (Apostol 1997, p. 22). The following table summarizes progress on finding successively larger values of N for which this condition holds for all n\leq N.

class="wikitable"
Nreference
align="right"| {{val|3316799}}Lehmer (1947)
align="right"| {{val|214928639999}}Lehmer (1949)
align="right"| {{val|1000000000000000}}Serre (1973, p. 98), Serre (1985)
align="right"| {{val|1213229187071998}}Jennings (1993)
align="right"| {{val|22689242781695999}}Jordan and Kelly (1999)
align="right"| {{val|22798241520242687999}}Bosman (2007)
align="right"| {{val|982149821766199295999}}Zeng and Yin (2013)
align="right"| {{val|816212624008487344127999}}Derickx, van Hoeij, and Zeng (2013)

Ramanujan's <math>L</math>-function

Ramanujan's L-function is defined by

:L(s)=\sum_{n\ge 1}\frac{\tau (n)}{n^s}

if \mathrm{Re}(s)>6 and by analytic continuation otherwise. It satisfies the functional equation

:\frac{L(s)\Gamma (s)}{(2\pi)^s}=\frac{L(12-s)\Gamma(12-s)}{(2\pi)^{12-s}},\quad s\notin\mathbb{Z}_0^-, \,12-s\notin\mathbb{Z}_0^{-}

and has the Euler product

:L(s)=\prod_{p\,\text{prime}}\frac{1}{1-\tau (p)p^{-s}+p^{11-2s}},\quad \mathrm{Re}(s)>7.

Ramanujan conjectured that all nontrivial zeros of L have real part equal to 6.

Notes

{{reflist|30em}}

References

  • {{Citation

| last=Apostol

| first=T. M.

| authorlink=Tom M. Apostol

| title=Modular Functions and Dirichlet Series in Number Theory

| year=1997

| journal=New York: Springer-Verlag 2nd Ed.

}}

  • {{Citation

| last=Ashworth

| first=M. H.

| title=Congruence and identical properties of modular forms (D. Phil. Thesis, Oxford)

| year=1968

}}

  • {{citation | last1=Dyson | first1=F. J. | author1-link=Freeman Dyson | title=Missed opportunities | zbl=0271.01005 | journal=Bull. Amer. Math. Soc. | volume=78 | issue=5 | pages=635–652 | year=1972 | doi=10.1090/S0002-9904-1972-12971-9| doi-access=free }}
  • {{Citation

| last=Kolberg

| first=O.

| title=Congruences for Ramanujan's function τ(n)

| journal=Arbok Univ. Bergen Mat.-Natur. Ser.

| issue=11

| year=1962

| mr=0158873 | zbl=0168.29502

}}

  • {{citation | last1=Lehmer | first1=D.H. | author1-link=D. H. Lehmer | title=The vanishing of Ramanujan's function τ(n) | zbl=0029.34502 | journal=Duke Math. J. | volume=14 | pages=429–433 | year=1947 | issue=2 | doi=10.1215/s0012-7094-47-01436-1}}
  • {{Citation

| last=Lygeros

| first=N.

| title=A New Solution to the Equation τ(p) ≡ 0 (mod p)

| url=http://www.cs.uwaterloo.ca/journals/JIS/VOL13/Lygeros/lygeros5.pdf

| year=2010

| journal=Journal of Integer Sequences

| volume=13

| pages=Article 10.7.4

}}

  • {{Citation | last1=Mordell | first1=Louis J. | author1-link=Louis Mordell | title=On Mr. Ramanujan's empirical expansions of modular functions. | url=https://archive.org/stream/proceedingsofcam1920191721camb#page/n133 | jfm=46.0605.01 | year=1917 | journal=Proceedings of the Cambridge Philosophical Society | volume=19 | pages=117–124}}
  • {{Citation

| last=Newman

| first=M.

| title=A table of τ (p) modulo p, p prime, 3 ≤ p ≤ 16067

| year=1972

| publisher=National Bureau of Standards

}}

  • {{Citation | last1=Rankin | first1=Robert A. | editor1-last=Andrews | editor1-first=George E. | title=Ramanujan revisited (Urbana-Champaign, Ill., 1987) | url=https://books.google.com/books?id=GJUEAQAAIAAJ | publisher=Academic Press | location=Boston, MA | isbn=978-0-12-058560-1 | mr=938968 | year=1988 | chapter=Ramanujan's tau-function and its generalizations | pages=245–268}}
  • {{Citation

| last=Ramanujan

| first=Srinivasa

| author-link=Srinivasa Ramanujan

| title=On certain arithmetical functions

| journal=Trans. Camb. Philos. Soc.

| year=1916

| volume=22

| issue=9

| pages=159–184

| mr=2280861

}}

  • {{Citation

| last=Serre

| first=J-P.

| title=Une interprétation des congruences relatives à la fonction \tau de Ramanujan

| journal=Séminaire Delange-Pisot-Poitou

| volume=14

| year=1968

| author-link=Jean-Pierre Serre

| url = http://www.numdam.org/item?id=SDPP_1967-1968__9_1_A13_0

}}

  • {{Citation

| last=Swinnerton-Dyer

| first=H. P. F.

| author-link=Peter Swinnerton-Dyer

| title=Modular Functions of One Variable III

| contribution=On l-adic representations and congruences for coefficients of modular forms

| year=1973

| isbn=978-3-540-06483-1

| series=Lecture Notes in Mathematics

| volume=350

| mr=0406931

| pages=1–55

| doi=10.1007/978-3-540-37802-0

| editor1-last=Kuyk

| editor1-first=Willem

| editor2-last=Serre

| editor2-first=Jean-Pierre

| editor2-link=Jean-Pierre Serre

}}

  • {{Citation

| last=Wilton

| first=J. R.

| title=Congruence properties of Ramanujan's function τ(n)

| year=1930

| journal=Proceedings of the London Mathematical Society

| volume=31

| pages=1–10

| doi=10.1112/plms/s2-31.1.1

}}

Category:Modular forms

Category:Multiplicative functions

Category:Srinivasa Ramanujan

Category:Zeta and L-functions