List of integrals of trigonometric functions
{{Short description|None}}
{{more sources needed|date=April 2024}}
{{Trigonometry}}
The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral.{{Cite journal |last=Bresock |first=Krista |date=2022-01-01 |title=Student Understanding of the Definite Integral When Solving Calculus Volume Problems |url=https://researchrepository.wvu.edu/etd/11491 |journal=Graduate Theses, Dissertations, and Problem Reports |doi=10.33915/etd.11491}}
Generally, if the function is any trigonometric function, and is its derivative,
In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
Integrands involving only [[sine]]
{{startplainlist|indent=1}}
\int x^n\sin ax\,dx &= -\frac{x^n}{a}\cos ax+\frac{n}{a}\int x^{n-1}\cos ax\,dx \\
&= \sum_{k=0}^{2k\leq n} (-1)^{k+1} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \cos ax +\sum_{k=0}^{2k+1\leq n}(-1)^k \frac{x^{n-1-2k}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \sin ax \\
&= - \sum_{k=0}^n \frac{x^{n-k}}{a^{1+k}}\frac{n!}{(n-k)!}\cos\left(ax+k\frac{\pi}{2}\right) \qquad\mbox{(for }n>0\mbox{)}
\end{align}
\int{\sin{\mathrm{(}}{ax}^{2}\mathrm{{+}}{bx}\mathrm{{+}}{c}{\mathrm{)}}{dx}}\mathrm{{=}}\left\{{\begin{align}
& {\sqrt{a}\sqrt{\frac{\mathit{\pi}}{2}}\cos\left({\frac{{b}^{2}\mathrm{{-}}{4}{ac}}{4a}}\right){S}\left({\frac{{2}{ax}\mathrm{{+}}{b}}{\sqrt{{2}{a}\mathit{\pi}}}}\right)\mathrm{{+}}\sqrt{a}\sqrt{\frac{\mathit{\pi}}{2}}\sin\left({\frac{{b}^{2}\mathrm{{-}}{4}{ac}}{4a}}\right){C}\left({\frac{{2}{ax}\mathrm{{+}}{b}}{\sqrt{{2}{a}\mathit{\pi}}}}\right)\;{to}\;{b}^{2}\mathrm{{-}}{4}{ac}\;{\mathrm{>}}\;{0}}\\
& {\sqrt{a}\sqrt{\frac{\mathit{\pi}}{2}}\cos\left({\frac{{b}^{2}\mathrm{{-}}{4}{ac}}{4a}}\right){S}\left({\frac{{2}{ax}\mathrm{{+}}{b}}{\sqrt{{2}{a}\mathit{\pi}}}}\right)\mathrm{{-}}\sqrt{a}\sqrt{\frac{\mathit{\pi}}{2}}\sin\left({\frac{{b}^{2}\mathrm{{-}}{4}{ac}}{4a}}\right){C}\left({\frac{{2}{ax}\mathrm{{+}}{b}}{\sqrt{{2}{a}\mathit{\pi}}}}\right)\;{to}\;{b}^{2}\mathrm{{-}}{4}{ac}\;{\mathrm{<}}\;{0}}
\end{align}}\right.\;\;{for}\;{a}\diagup\!\!\!\!{\mathrm{{=}}}{0}{\mathrm{,}}\;{a}{\mathrm{>}}{0}
{{endplainlist}}
Integrands involving only [[cosine]]
{{startplainlist|indent=1}}
\int x^n\cos ax\,dx &= \frac{x^n\sin ax}{a} - \frac{n}{a}\int x^{n-1}\sin ax\,dx \\
&= \sum_{k=0}^{2k+1\leq n} (-1)^{k} \frac{x^{n-2k-1}}{a^{2+2k}}\frac{n!}{(n-2k-1)!} \cos ax +\sum_{k=0}^{2k\leq n}(-1)^{k} \frac{x^{n-2k}}{a^{1+2k}}\frac{n!}{(n-2k)!} \sin ax \\
&=\sum_{k=0}^n (-1)^{\lfloor k/2 \rfloor} \frac{x^{n-k}}{a^{1+k}}\frac{n!}{(n-k)!}\cos\left(ax -\frac{(-1)^k+1}{2}\frac{\pi}{2}\right) \\
&=\sum_{k=0}^n \frac{x^{n-k}}{a^{1+k}}\frac{n!}{(n-k)!}\sin\left(ax+k\frac{\pi}{2}\right) \qquad\mbox{(for }n>0\mbox{)}
\end{align}
{{endplainlist}}
Integrands involving only [[tangent (trigonometric function)|tangent]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrands involving only [[secant (trigonometric function)|secant]]
{{Further|Integral of the secant function}}
{{startplainlist|indent=1}}
{{endplainlist}}
Integrands involving only [[cosecant]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrands involving only [[cotangent]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrands involving both [[sine]] and [[cosine]]
An integral that is a rational function of the sine and cosine can be evaluated using Bioche's rules.
{{startplainlist|indent=1}}
\int(\sin^n ax)(\cos^m ax)\,dx &= -\frac{(\sin^{n-1} ax)(\cos^{m+1} ax)}{a(n+m)}+\frac{n-1}{n+m}\int(\sin^{n-2} ax)(\cos^m ax)\,dx \qquad\mbox{(for }m,n>0\mbox{)} \\
&= \frac{(\sin^{n+1} ax)(\cos^{m-1} ax)}{a(n+m)} + \frac{m-1}{n+m}\int(\sin^n ax)(\cos^{m-2} ax)\,dx \qquad\mbox{(for }m,n>0\mbox{)}
\end{align}
\int \frac{\sin^2 x}{1 + \cos^2 x} \, dx &= \sqrt{2}\operatorname{arctangant}\left(\frac{\tan x}{\sqrt{2}}\right) - x \qquad\mbox{(for x in}] - \frac{\pi}{2} ; + \frac{\pi}{2} [\mbox{)} \\
&= \sqrt{2}\operatorname{arctangant}\left(\frac{\tan x}{\sqrt{2}}\right)-\operatorname{arctangant}\left(\tan x\right) \qquad\mbox{(this time x being any real number }\mbox{)}
\end{align}
\frac{\sin^{n+1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-m+2}{m-1}\int\frac{\sin^n ax\,dx}{\cos^{m-2} ax} &\mbox{(for }m\neq 1\mbox{)} \\
\frac{\sin^{n-1} ax}{a(m-1)\cos^{m-1} ax}-\frac{n-1}{m-1}\int\frac{\sin^{n-2} ax\,dx}{\cos^{m-2} ax} &\mbox{(for }m\neq 1\mbox{)} \\
-\frac{\sin^{n-1} ax}{a(n-m)\cos^{m-1} ax}+\frac{n-1}{n-m}\int\frac{\sin^{n-2} ax\,dx}{\cos^m ax} &\mbox{(for }m\neq n\mbox{)}
\end{cases}
-\frac{\cos^{n+1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-m+2}{m-1}\int\frac{\cos^n ax\,dx}{\sin^{m-2} ax} &\mbox{(for }n\neq 1\mbox{)} \\
-\frac{\cos^{n-1} ax}{a(m-1)\sin^{m-1} ax} - \frac{n-1}{m-1}\int\frac{\cos^{n-2} ax\,dx}{\sin^{m-2} ax} &\mbox{(for }m\neq 1\mbox{)} \\
\frac{\cos^{n-1} ax}{a(n-m)\sin^{m-1} ax} + \frac{n-1}{n-m}\int\frac{\cos^{n-2} ax\,dx}{\sin^m ax} &\mbox{(for }m\neq n\mbox{)}
\end{cases}
{{endplainlist}}
Integrands involving both [[sine]] and [[tangent]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrand involving both [[cosine]] and [[tangent]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrand involving both [[sine]] and [[cotangent]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrand involving both [[cosine]] and [[cotangent]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrand involving both [[secant (trigonometry)|secant]] and [[tangent]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrand involving both [[cosecant]] and [[cotangent]]
{{startplainlist|indent=1}}
{{endplainlist}}
Integrals in a quarter period
Using the beta function one can write
{{startplainlist|indent=1}}
\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{if } n\text{ is even} \\
\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{4}{5} \cdot \frac{2}{3}, & \text{if } n\text{ is odd and more than 1} \\
1, & \text{if } n=1
\end{cases}
{{endplainlist}}
Using the modified Struve functions and modified Bessel functions one can write
{{startplainlist|indent=1}}
{{endplainlist}}
Integrals with symmetric limits
{{startplainlist|indent=1}}
{{endplainlist}}
Integral over a full circle
{{startplainlist|indent=1}}
{{endplainlist}}
See also
References
{{reflist}}
{{Lists of integrals}}
{{DEFAULTSORT:Integrals of Trigonometric Functions}}