List of mathematic operators

{{Short description|none}}

In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.

In the following L is an operator

:L:\mathcal{F}\to\mathcal{G}

which takes a function y\in\mathcal{F} to another function L[y]\in\mathcal{G}. Here, \mathcal{F} and \mathcal{G} are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.

class="wikitable"
style="background:#eaeaea"

! style="text-align: center" | Expression

! style="text-align: center" | Curve
definition

! style="text-align: center" | Variables

! style="text-align: center" | Description

style="background:#eafaea" colspan=4|Linear transformations
L[y]=y^{(n)} Derivative of nth order
L[y]=\int_a^t y \,dtCartesiany=y(x)
x=t
Integral, area
L[y]=y\circ fComposition operator
L[y]=\frac{y\circ t+y\circ -t}{2}Even component
L[y]=\frac{y\circ t-y\circ -t}{2}Odd component
L[y]=y\circ (t+1) - y\circ t = \Delta yDifference operator
L[y]=y\circ (t) - y\circ (t-1) = \nabla yBackward difference (Nabla operator)
L[y]=\sum y=\Delta^{-1}yIndefinite sum operator (inverse operator of difference)
L[y] =-(py')'+qy Sturm–Liouville operator
style="background:#eafaea" colspan=4|Non-linear transformations
F[y]=y^{[-1]} Inverse function
F[y]=t\,y'^{[-1]} - y\circ y'^{[-1]} Legendre transformation
F[y]=f\circ yLeft composition
F[y]=\prod yIndefinite product
F[y]=\frac{y'}{y}Logarithmic derivative
F[y]={\frac{ty'}{y}}Elasticity
F[y]={y \over y'}-{3\over 2}\left({y\over y'}\right)^2Schwarzian derivative
F[y]=\int_a^t |y'| \,dt Total variation
F[y]=\frac{1}{t-a}\int_a^t y\,dt Arithmetic mean
F[y]=\exp \left( \frac{1}{t-a}\int_a^t \ln y\,dt \right) Geometric mean
F[y]= -\frac{y}{y'}Cartesiany=y(x)
x=t
rowspan=3|Subtangent
F[x,y]= -\frac{yx'}{y'}Parametric
Cartesian
x=x(t)
y=y(t)
F[r]= -\frac{r^2}{r'}Polarr=r(\phi)
\phi=t
F[r]=\frac{1}{2}\int_a^t r^2 dtPolarr=r(\phi)
\phi=t
Sector area
F[y]= \int_a^t \sqrt { 1 + y'^2 }\, dtCartesiany=y(x)
x=t
rowspan=3|Arc length
F[x,y]= \int_a^t \sqrt { x'^2 + y'^2 }\, dtParametric
Cartesian
x=x(t)
y=y(t)
F[r]= \int_a^t \sqrt { r^2 + r'^2 }\, dtPolarr=r(\phi)
\phi=t
F[y] = \int_a^t\sqrt[3]{y}\, dt Cartesiany=y(x)
x=t
rowspan=3|Affine arc length
F[x,y] = \int_a^t\sqrt[3]{x'y-xy'}\, dt Parametric
Cartesian
x=x(t)
y=y(t)
F[x,y,z]=\int_a^t\sqrt[3]{z(x'y-y'x)+z(xy'-x'y)+z'(xy-xy)}dtParametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
F[y]=\frac{y}{(1+y'^2)^{3/2}}Cartesiany=y(x)
x=t
rowspan=4|Curvature
F[x,y]= \frac{x'y-y'x}{(x'^2+y'^2)^{3/2}}Parametric
Cartesian
x=x(t)
y=y(t)
F[r]=\frac{r^2+2r'^2-rr}{(r^2+r'^2)^{3/2}}Polarr=r(\phi)
\phi=t
F[x,y,z]=\frac{\sqrt{(zy'-z'y)^2+(xz'-zx')^2+(yx'-xy')^2}}{(x'^2+y'^2+z'^2)^{3/2}}Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
F[y]=\frac{1}{3}\frac{y'}{(y)^{5/3}}-\frac{5}{9}\frac{y^2}{(y)^{8/3}}Cartesiany=y(x)
x=t
rowspan=2|Affine curvature
F[x,y]= \frac{xy-xy}{(x'y-xy')^{5/3}}-\frac{1}{2}\left[\frac{1}{(x'y-xy')^{2/3}}\right]Parametric
Cartesian
x=x(t)
y=y(t)
F[x,y,z]=\frac{z(x'y-y'x)+z(xy'-x'y)+z'(xy-x'y)}{(x'^2+y'^2+z'^2)(x^2+y^2+z^2)}Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
Torsion of curves
X[x,y]=\frac{y'}{yx'-xy'}

Y[x,y]=\frac{x'}{xy'-yx'}
Parametric
Cartesian
x=x(t)
y=y(t)
Dual curve
(tangent coordinates)
X[x,y]=x+\frac{ay'}{\sqrt {x'^2+y'^2}}

Y[x,y]=y-\frac{ax'}{\sqrt {x'^2+y'^2}}
Parametric
Cartesian
x=x(t)
y=y(t)
Parallel curve
X[x,y]=x+y'\frac{x'^2+y'^2}{xy'-yx'}

Y[x,y]=y+x'\frac{x'^2+y'^2}{y
x'-x''y'}
Parametric
Cartesian
x=x(t)
y=y(t)
rowspan=2|Evolute
F[r]=t (r'\circ r^{[-1]})Intrinsicr=r(s)
s=t
X[x,y]=x-\frac{x'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}

Y[x,y]=y-\frac{y'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}
Parametric
Cartesian
x=x(t)
y=y(t)
|Involute
X[x,y]=\frac{(xy'-yx')y'}{x'^2 + y'^2}

Y[x,y]=\frac{(yx'-xy')x'}{x'^2 + y'^2}
Parametric
Cartesian
x=x(t)
y=y(t)
|Pedal curve with pedal point (0;0)
X[x,y]=\frac{(x'^2-y'^2)y'+2xyx'}{xy'-yx'}

Y[x,y]=\frac{(x'^2-y'^2)x'+2xyy'}{xy'-yx'}
Parametric
Cartesian
x=x(t)
y=y(t)
|Negative pedal curve with pedal point (0;0)
X[y] = \int_a^t \cos \left[\int_a^t \frac{1}{y} \,dt\right] dt

Y[y] = \int_a^t \sin \left[\int_a^t \frac{1}{y} \,dt\right] dt
Intrinsicy=r(s)
s=t
Intrinsic to
Cartesian
transformation
style="background:#eafaea" colspan=4|Metric functionals
F[y]=\|y\|=\sqrt{\int_E y^2 \, dt}Norm
F[x,y]=\int_E xy \, dtInner product
F[x,y]=\arccos \left[\frac{\int_E xy \, dt}{\sqrt{\int_E x^2 \, dt}\sqrt{\int_E y^2 \, dt}}\right]Fubini–Study metric
(inner angle)
style="background:#eafaea" colspan=4|Distribution functionals
F[x,y] = x * y = \int_E x(s) y(t - s)\, dsConvolution
F[y] = \int_E y \ln y \, dtDifferential entropy
F[y] = \int_E yt\,dtExpected value
F[y] = \int_E \left(t-\int_E yt\,dt\right)^2y\,dtVariance

See also