List of nonlinear partial differential equations

A–F

:

class="wikitable" style="background: white; color: black; text-align: left"
style="background: #eee"

!Name

!Dim

!Equation

!Applications

Bateman-Burgers equation

|1+1

| \displaystyle u_t+uu_x=\nu u_{xx}

|Fluid mechanics

Benjamin–Bona–Mahony

|1+1

|\displaystyle u_t+u_x+uu_x-u_{xxt}=0

|Fluid mechanics

Benjamin–Ono

|1+1

| \displaystyle u_t+Hu_{xx}+uu_x=0

| internal waves in deep water

Boomeron

|1+1

|\displaystyle u_t=\mathbf{b}\cdot\mathbf{v}_x, \quad

\displaystyle \mathbf{v}_{xt}=u_{xx}\mathbf{b}+\mathbf{a}\times\mathbf{v}_x-

2\mathbf{v}\times(\mathbf{v}\times\mathbf{b})

|Solitons

Boltzmann equation

|1+6

|\frac{\partial f_i}{\partial t} + \frac{\mathbf{p}_i}{m_i}\cdot\nabla f_i + \mathbf{F}\cdot\frac{\partial f_i}{\partial \mathbf{p}_i} = \left(\frac{\partial f_i}{\partial t} \right)_\mathrm{coll},

\left(\frac{\partial f_i}{\partial t} \right)_{\mathrm{coll}} = \sum_{j=1}^n \iint g_{ij} I_{ij}(g_{ij}, \Omega)[f'_i f'_j - f_if_j] \,d\Omega\,d^3\mathbf{p'}

|Statistical mechanics

Born–Infeld

|1+1

|\displaystyle (1-u_t^2)u_{xx} +2u_xu_tu_{xt}-(1+u_x^2)u_{tt}=0

| Electrodynamics

Boussinesq

| 1+1

| \displaystyle u_{tt} - u_{xx} - u_{xxxx} - 3(u^2)_{xx} = 0

|Fluid mechanics

Boussinesq type equation

| 1+1

| \displaystyle u_{tt}-u_{xx}-2 \alpha (u u_x)_{x}-\beta u_{xxtt}=0

|Fluid mechanics

Buckmaster

|1+1

|\displaystyle u_t=(u^4)_{xx}+(u^3)_x

|Thin viscous fluid sheet flow

Cahn–Hilliard equation

|Any

|\displaystyle c_t = D\nabla^2\left(c^3-c-\gamma\nabla^2 c\right)

|Phase separation

Calabi flow

|Any

|\frac{\partial g_{ij}}{\partial t}=(\Delta R)g_{ij}

|Calabi–Yau manifolds

Camassa–Holm

|1+1

|u_t + 2\kappa u_x - u_{xxt} + 3 u u_x = 2 u_x u_{xx} + u u_{xxx}\,

|Peakons

Carleman

|1+1

|\displaystyle u_t+u_x=v^2-u^2=v_x-v_t

|

|Cauchy momentum

|any

|\displaystyle \rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = \nabla \cdot \sigma + \rho\mathbf{f}

|Momentum transport

Chafee–Infante equation

|

| u_t-u_{xx}+\lambda(u^3-u)=0

|

Clairaut equation

|any

|x\cdot Du+f(Du)=u

|Differential geometry

Clarke's equation

|1+1

|(\theta_t-\gamma \delta e^{\theta})_{tt}=\nabla^2(\theta_t-\delta e^\theta)

|Combustion

Complex Monge–Ampère

|Any

|\displaystyle \det(\partial_{i\bar j}\varphi) = lower order terms

|Calabi conjecture

Constant astigmatism

|1+1

|z_{yy} + \left(\frac{1}{z}\right)_{xx} + 2 = 0

|Differential geometry

Davey–Stewartson

|1+2

|\displaystyle i u_t + c_0 u_{xx} + u_{yy} = c_1 |u|^2 u + c_2 u \varphi_x, \quad

\displaystyle \varphi_{xx} + c_3 \varphi_{yy} = ( |u|^2 )_x

|Finite depth waves

Degasperis–Procesi

|1+1

|\displaystyle u_t - u_{xxt} + 4u u_x = 3 u_x u_{xx} + u u_{xxx}

|Peakons

Dispersive long wave

|1+1

|\displaystyle u_t=(u^2-u_x+2w)_x, w_t=(2uw+w_x)_x

|

Drinfeld–Sokolov–Wilson

|1+1

|\displaystyle u_t=3ww_x, \quad

\displaystyle w_t=2w_{xxx}+2uw_x+u_xw

|

Dym equation

|1+1

|\displaystyle u_t = u^3u_{xxx}.\,

|Solitons

Eckhaus equation

|1+1

|iu_t+u_{xx}+2|u|^2_xu+|u|^4u=0

|Integrable systems

Eikonal equation

|any

|\displaystyle |\nabla u(x)|=F(x), \ x\in \Omega

|optics

Einstein field equations

| Any

|\displaystyle R_{\mu\nu} - {\textstyle 1 \over 2}R\,g_{\mu\nu}+\Lambda g_{\mu\nu} = \frac{8\pi G}{c^{4}} T_{\mu\nu}

|General relativity

Erdogan–Chatwin equation

|1+1

|\varphi_t = (\varphi_x + a\varphi_x^3)_x

|Fluid dynamics

Ernst equation

|2

|\displaystyle \Re(u)(u_{rr}+u_r/r+u_{zz}) = (u_r)^2+(u_z)^2

|

Estevez–Mansfield–Clarkson equation

|

| U_{tyyy}+\beta U_y U_{yt}+\beta U_{yy} U_t+U_{tt}=0 \text{ in which } U=u(x,y,t)

|

Euler equations

|1+3

|\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho\mathbf{u})=0,\quad \rho\left(\frac{\partial\mathbf{u}}{\partial t}+\mathbf{v}\cdot\nabla\mathbf{v}\right)=-\nabla p + \rho\mathbf{f},\quad \frac{\partial s}{\partial t}+\mathbf{v}\cdot\nabla s=0

|non-viscous fluids

Fisher's equation

|1+1

|\displaystyle u_t=u(1-u)+u_{xx}

|Gene propagation

FitzHugh–Nagumo model

|1+1

|\displaystyle u_t=u_{xx}+u(u-a)(1-u)+w, \quad

\displaystyle w_t=\varepsilon u

|Biological neuron model

Föppl–von Kármán equations

|

| \frac{Eh^3}{12(1-\nu^2)}\nabla^4 w-h\frac{\partial}{\partial x_\beta}\left(\sigma_{\alpha\beta}\frac{\partial w}{\partial x_\alpha}\right)=P, \quad \frac{\partial\sigma_{\alpha\beta}}{\partial x_\beta}=0

|Solid Mechanics

Fujita–Storm equation

|

| u_{t}=a (u^{-2} u_x)_x

|

G–K

:

class="wikitable" style="background: white; color: black; text-align: left"
style="background: #eee"

!Name

!Dim

!Equation

!Applications

G equation

|1+3

|G_t + \mathbf{v}\cdot\nabla G = S_L(G) |\nabla G|

| turbulent combustion

Generic scalar transport

|1+3

|\displaystyle \varphi_t + \nabla \cdot f(t,x,\varphi,\nabla\varphi) = g(t,x,\varphi)

|transport

Ginzburg–Landau

|1+3

|\displaystyle \alpha \psi + \beta |\psi|^2 \psi + \tfrac{1}{2m} \left(-i\hbar\nabla - 2e\mathbf{A} \right)^2 \psi = 0

|Superconductivity

Gross–Pitaevskii

|{{math|1 + n}}

|\displaystyle i\partial_t\psi = \left (-\tfrac12\nabla^2 + V(x) + g|\psi|^2 \right ) \psi

| Bose–Einstein condensate

Gyrokinetics equation

|{{math|1 + 5}}

|{\displaystyle {\frac {\partial h_{s}}{\partial t}}+\left(v_{|

{\hat {b}}+{\vec {V}}_{ds}+\left\langle {\vec {V}}_{\phi }\right\rangle _{\varphi }\right)\cdot {\vec {\nabla }}_{\vec {R}}h_{s}-\sum _{s'}\left\langle C\left[h_{s},h_{s'}\right]\right\rangle _{\varphi }={\frac {Z_{s}ef_{s0}}{T_{s}}}{\frac {\partial \left\langle \phi \right\rangle _{\varphi }}{\partial t}}-{\frac {\partial f_{s0}}{\partial \psi }}\left\langle {\vec {V}}_{\phi }\right\rangle _{\varphi }\cdot {\vec {\nabla }}\psi }

| Microturbulence in plasma

|-

||Guzmán

|{{math|1 + n}}

|\displaystyle J_t+gJ_x+1/2\sigma^2J_{xx}-\lambda\sigma^2(J_x)^2+f=0

| Hamilton–Jacobi–Bellman equation for risk aversion

|-

|Hartree equation

|Any

|\displaystyle i\partial_tu + \Delta u= \left (\pm |x|^{-n} |u|^2 \right) u

|

|-

|Hasegawa–Mima

|1+3

|\displaystyle 0 = \frac{\partial}{\partial t} \left( \nabla^2 \varphi - \varphi \right) - \left[ \left( \nabla\varphi \times \hat{\mathbf{z}} \right)\cdot \nabla \right] \left[ \nabla^2 \varphi - \ln \left(\frac{n_0}{\omega_{ci}}\right)\right]

|Turbulence in plasma

|-

|Heisenberg ferromagnet

|1+1

|\displaystyle \mathbf{S}_t=\mathbf{S}\wedge \mathbf{S}_{xx}.

|Magnetism

|-

|Hicks

|1+1

|\psi_{rr} - \psi_r/r + \psi_{zz} = r^2 \mathrm{d}H/\mathrm{d} \psi - \Gamma \mathrm{d} \Gamma/\mathrm{d}\psi

|Fluid dynamics

|-

|Hunter–Saxton

|1+1

|\displaystyle \left (u_t + u u_x \right )_x = \tfrac{1}{2} u_x^2

|Liquid crystals

|-

|Ishimori equation

|1+2

|\displaystyle \mathbf{S}_t = \mathbf{S}\wedge \left(\mathbf{S}_{xx} + \mathbf{S}_{yy}\right)+ u_x\mathbf{S}_y + u_y\mathbf{S}_x,\quad \displaystyle u_{xx}-\alpha^2 u_{yy}=-2\alpha^2 \mathbf{S}\cdot\left(\mathbf{S}_x\wedge \mathbf{S}_y\right)

|Integrable systems

|-

|Kadomtsev –Petviashvili

|1+2

|\displaystyle \partial_x \left (\partial_t u+u \partial_x u+\varepsilon^2\partial_{xxx}u \right )+\lambda\partial_{yy}u=0

|Shallow water waves

|-

|Kardar–Parisi–Zhang equation

|1+3

|\displaystyle h_t=\nu \nabla^2 h + \lambda (\nabla h)^2 /2+ \eta

|Stochastics

|-

|von Karman

|2

|\displaystyle \nabla^4 u = E \left (w_{xy}^2-w_{xx}w_{yy} \right ), \quad \nabla^4 w = a+b \left (u_{yy}w_{xx}+u_{xx}w_{yy}-2u_{xy}w_{xy} \right)

|

|-

|Kaup

|1+1

|\displaystyle f_x=2fgc(x-t)=g_t

|

|-

|Kaup–Kupershmidt

|1+1

|\displaystyle u_t = u_{xxxxx}+10u_{xxx}u+25u_{xx}u_x+20u^2u_x

|Integrable systems

|-

|Klein–Gordon–Maxwell

|any

|\displaystyle \nabla^2s= \left (|\mathbf a|^2+1 \right )s, \quad \nabla^2\mathbf a =\nabla(\nabla\cdot\mathbf a)+s^2\mathbf a

|

|-

|Klein–Gordon (nonlinear)

|any

|\nabla^2u+\lambda u^p=0

| Relativistic quantum mechanics

|-

|Khokhlov–Zabolotskaya

|1+2

|\displaystyle u_{xt} -(uu_x)_x =u_{yy}

|

|-

|Kompaneyets

|1+1

|\displaystyle n_{t} =x^{-2}[x^4(n_x+n^2+n)]_x

|Physical kinetics

|-

|Korteweg–de Vries (KdV)

|1+1

|\displaystyle u_{t}+u_{xxx}-6u u_{x}=0

|Shallow waves, Integrable systems

|-

|KdV (super)

|1+1

|\displaystyle u_t=6uu_x-u_{xxx}+3ww_{xx}, \quad w_t=3u_xw+6uw_x-4w_{xxx}

|

|-

|colspan="4" |There are more minor variations listed in the article on KdV equations.

|-

|Kuramoto–Sivashinsky equation

|{{math|1 + n}}

|\displaystyle u_t+\nabla^4u+\nabla^2u+ \tfrac{1}{2}|\nabla u|^2=0

|Combustion

|}

L–Q

:

class="wikitable" style="background: white; color: black; text-align: left"
style="background: #eee"

!Name

!Dim

!Equation

!Applications

Landau–Lifshitz model

|1+n

|\displaystyle \frac{\partial \mathbf{S}}{\partial t} = \mathbf{S}\wedge \sum_i\frac{\partial^2 \mathbf{S}}{\partial x_i^{2}} + \mathbf{S}\wedge J\mathbf{S}

|Magnetic field in solids

Lin–Tsien equation

|1+2

| \displaystyle 2u_{tx}+u_xu_{xx}-u_{yy}=0

|

Liouville equation

|any

|\displaystyle \nabla^2u+e^{\lambda u}=0

|

Liouville–Bratu–Gelfand equation

|any

|\nabla^2 \psi + \lambda e^\psi=0

|combustion, astrophysics

Logarithmic Schrödinger equation

|any

| i \frac{\partial \psi}{\partial t} + \Delta \psi + \psi \ln |\psi|^2 = 0.

|Superfluids, Quantum gravity

Minimal surface

|3

|\displaystyle \operatorname{div}(Du/\sqrt{1+|Du|^2})=0

|minimal surfaces

Monge–Ampère

|any

|\displaystyle \det(\partial_{ij}\varphi) = lower order terms

|

Navier–Stokes
(and its derivation)

|1+3

| \displaystyle

\rho \left( \frac{\partial v_i}{\partial t}

+ v_j \frac{\partial v_i}{\partial x_j} \right) =

- \frac{\partial p}{\partial x_i}

+ \frac{\partial}{\partial x_j} \left[

\mu \left( \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)

+ \lambda \frac{\partial v_k}{\partial x_k}

\right]

+ \rho f_i


+ mass conservation: \frac{\partial \rho}{\partial t} + \frac{\partial \left( \rho\, v_i \right)}{\partial x_i} = 0

+ an equation of state to relate p and ρ, e.g. for an incompressible flow: \frac{\partial v_i}{\partial x_i} = 0

|Fluid flow, gas flow

Nonlinear Schrödinger (cubic)

|1+1

|\displaystyle i\partial_t\psi=-{1\over 2}\partial^2_x\psi+\kappa|\psi|^2 \psi

|optics, water waves

Nonlinear Schrödinger (derivative)

|1+1

|\displaystyle i\partial_t\psi=-{1\over 2}\partial^2_x\psi+\partial_x(i\kappa|\psi|^2 \psi)

|optics, water waves

Omega equation

|1+3

|\displaystyle \nabla^2\omega + \frac{f^2}{\sigma}\frac{\partial^2\omega}{\partial p^2} \displaystyle = \frac{f}{\sigma}\frac{\partial}{\partial p}\mathbf{V}_g\cdot\nabla_p (\zeta_g + f) + \frac{R}{\sigma p}\nabla^2_p(\mathbf{V}_g\cdot\nabla_p T)

|atmospheric physics

Plateau

|2

|\displaystyle (1+u_y^2)u_{xx} -2u_xu_yu_{xy} +(1+u_x^2)u_{yy}=0

|minimal surfaces

Pohlmeyer–Lund–Regge

|2

|\displaystyle u_{xx}-u_{yy}\pm \sin u \cos u +\frac{\cos u}{\sin^3 u}(v_x^2-v_y^2)=0,\quad \displaystyle (v_x\cot^2u)_x = (v_y\cot^2 u)_y

|

Porous medium

|1+n

|\displaystyle u_t=\Delta(u^\gamma)

|diffusion

Prandtl

|1+2

|\displaystyle u_t+uu_x+vu_y=U_t+UU_x+\frac{\mu}{\rho}u_{yy}, \displaystyle u_x+v_y=0

|boundary layer

R–Z, α–ω

:

class="wikitable" style="background: white; color: black; text-align: left"
style="background: #eee"

!Name

!Dim

!Equation

!Applications

Rayleigh

|1+1

|\displaystyle u_{tt}-u_{xx} = \varepsilon(u_t-u_t^3)

|

Ricci flow

|Any

|\displaystyle \partial_t g_{ij}=-2 R_{ij}

|Poincaré conjecture

Richards equation

|1+3

|\displaystyle \theta_t=\left[ K(\theta) \left (\psi_z + 1 \right) \right]_z

|Variably saturated flow in porous media

Rosenau–Hyman

|1+1

| u_t + a \left(u^n\right)_x + \left(u^n\right)_{xxx} = 0

| compacton solutions

Sawada–Kotera

|1+1

|\displaystyle u_t+45u^2u_x+15u_xu_{xx}+15uu_{xxx}+u_{xxxxx}=0

|

Sack–Schamel equation

|1+1

|

\ddot V + \partial_\eta \left[\frac{1}{1-\ddot V} \partial_\eta \left(\frac{1-\ddot V}{V}\right) \right] =0

|plasmas

Schamel equation

|1+1

|\phi_t + (1 + b \sqrt \phi ) \phi_x + \phi_{xxx} = 0

|plasmas, solitons, optics

Schlesinger

| Any

|\displaystyle {\partial A_i \over \partial t_j} {\left[ A_i, \ A_j \right] \over t_i - t_j}, \quad i\neq j, \quad {\partial A_i \over \partial t_i} =- \sum_{j=1 \atop j\neq i}^n {\left[ A_i, \ A_j \right] \over t_i - t_j}, \quad 1\leq i, j \leq n

|isomonodromic deformations

Seiberg–Witten

|1+3

|\displaystyle D^A\varphi=0, \qquad F^+_A=\sigma(\varphi)

|Seiberg–Witten invariants, QFT

Shallow water

|1+2

|\displaystyle \eta_t + (\eta u)_x + (\eta v)_y = 0,\ (\eta u)_t+ \left( \eta u^2 + \frac{1}{2}g \eta^2 \right)_x + (\eta uv)_y = 0,\ (\eta v)_t + (\eta uv)_x + \left(\eta v^2 + \frac{1}{2}g \eta ^2\right)_y = 0

|shallow water waves

Sine–Gordon

|1+1

|\displaystyle \, \varphi_{tt}- \varphi_{xx} + \sin\varphi = 0

|Solitons, QFT

Sinh–Gordon

|1+1

|\displaystyle u_{xt}= \sinh u

|Solitons, QFT

Sinh–Poisson

|1+n

|\displaystyle \nabla^2u+\sinh u=0

|Fluid Mechanics

Swift–Hohenberg

|any

|\displaystyle

u_t = r u - (1+\nabla^2)^2u + N(u)

|pattern forming

Thomas

|2

|\displaystyle u_{xy}+\alpha u_x+\beta u_y+\gamma u_xu_y=0

|

Thirring

|1+1

|\displaystyle iu_x+v+u|v|^2=0, \displaystyle iv_t+u+v|u|^2=0

|Dirac field, QFT

Toda lattice

|any

|\displaystyle \nabla^2\log u_n = u_{n+1}-2u_n+u_{n-1}

|

Veselov–Novikov

|1+2

|\displaystyle (\partial_t+\partial_z^3+\partial_{\bar z}^3)v+\partial_z(uv)+\partial_{\bar z}(uw) =0, \displaystyle \partial_{\bar z}u=3\partial_zv, \displaystyle \partial_zw=3\partial_{\bar z} v

| shallow water waves

Vorticity equation

|

|\frac{\partial \boldsymbol \omega}{\partial t} + (\mathbf u \cdot \nabla) \boldsymbol \omega = (\boldsymbol \omega \cdot \nabla) \mathbf u - \boldsymbol \omega (\nabla \cdot \mathbf u) + \frac{1}{\rho^2}\nabla \rho \times \nabla p + \nabla \times \left( \frac{\nabla \cdot \tau}{\rho} \right) + \nabla \times \left( \frac{\mathbf{f}}{\rho} \right), \ \boldsymbol{\omega}=\nabla\times\mathbf{u}

|Fluid Mechanics

Wadati–Konno–Ichikawa–Schimizu

|1+1

|\displaystyle iu_t+((1+|u|^2)^{-1/2}u)_{xx}=0

|

WDVV equations

|Any

|\displaystyle

\sum_{\sigma, \tau = 1}^n\left({\partial^3 F \over \partial t^\alpha t^\beta t^\sigma} \eta^{\sigma \tau} {\partial^3 F \over \partial t^\mu t^\nu t^\tau} \right) \displaystyle

= \sum_{\sigma, \tau = 1}^n\left({\partial^3 F \over \partial t^\alpha t^\nu t^\sigma} \eta^{\sigma \tau} {\partial^3 F \over \partial t^\mu t^\beta t^\tau} \right)

|Topological field theory, QFT

WZW model

|1+1

|S_k(\gamma)= - \, \frac {k}{8\pi} \int_{S^2} d^2x\,

\mathcal{K} (\gamma^{-1} \partial^\mu \gamma \, , \,

\gamma^{-1} \partial_\mu \gamma) + 2\pi k\, S^{\mathrm WZ}(\gamma)

S^{\mathrm WZ}(\gamma) = - \, \frac{1}{48\pi^2} \int_{B^3} d^3y\,

\varepsilon^{ijk} \mathcal{K} \left(

\gamma^{-1} \, \frac {\partial \gamma} {\partial y^i} \, , \,

\left[

\gamma^{-1} \, \frac {\partial \gamma} {\partial y^j} \, , \,

\gamma^{-1} \, \frac {\partial \gamma} {\partial y^k}

\right]

\right)

|QFT

Whitham equation

|1+1

|\displaystyle \eta_t + \alpha \eta \eta_x + \int_{-\infty}^{+\infty} K(x-\xi)\, \eta_\xi(\xi,t)\, \text{d}\xi = 0

|water waves

Williams spray equation

|

|\frac{\partial f_j}{\partial t} + \nabla_x\cdot(\mathbf{v}f_j) + \nabla_v\cdot(F_jf_j) =- \frac{\partial }{\partial r}(R_jf_j) - \frac{\partial }{\partial T}(E_jf_j) + Q_j + \Gamma_j,\ F_j = \dot{\mathbf{v}},\ R_j = \dot{r},\ E_j = \dot{T},\ j = 1,2,...,M

|Combustion

Yamabe

|n

|\displaystyle\Delta \varphi+h(x)\varphi = \lambda f(x)\varphi^{(n+2)/(n-2)}

|Differential geometry

Yang–Mills (source-free)

|Any

|\displaystyle D_\mu F^{\mu\nu}=0, \quad F_{\mu \nu} = A_{\mu, \nu} - A_{\nu, \mu }+ [A_\mu, \, A_\nu]

|Gauge theory, QFT

Yang–Mills (self-dual/anti-self-dual)

| 4

| F_{\alpha \beta} = \pm \varepsilon_{\alpha \beta \mu \nu} F^{\mu \nu},

\quad F_{\mu \nu} = A_{\mu, \nu} - A_{\nu, \mu }+ [A_\mu, \, A_\nu]

| Instantons, Donaldson theory, QFT

Yukawa

|1+n

|\displaystyle i \partial_t^{}u + \Delta u = -A u,\quad \displaystyle\Box A = m^2_{} A + |u|^2

|Meson-nucleon interactions, QFT

Zakharov system

|1+3

|\displaystyle i \partial_t^{} u + \Delta u = un,\quad \displaystyle \Box n = -\Delta (|u|^2_{})

|Langmuir waves

Zakharov–Schulman

|1+3

|\displaystyle iu_t + L_1u = \varphi u,\quad \displaystyle L_2 \varphi = L_3( | u |^2)

|Acoustic waves

Zeldovich–Frank-Kamenetskii equation

|1+3

|\displaystyle u_t = D\nabla^2 u + \frac{\beta^2}{2}u(1-u) e^{-\beta(1-u)}

|Combustion

Zoomeron

|1+1

|\displaystyle (u_{xt}/u)_{tt}-(u_{xt}/u)_{xx} +2(u^2)_{xt}=0

|Solitons

φ4 equation

|1+1

|\displaystyle \varphi_{tt}-\varphi_{xx}-\varphi+\varphi^3=0

| QFT

σ-model

|1+1

|\displaystyle {\mathbf v}_{xt}+({\mathbf v}_x{\mathbf v}_t){\mathbf v}=0

|Harmonic maps, integrable systems, QFT

References