List of nonlinear partial differential equations
{{short description|none}}
See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations.
A–F
:
class="wikitable" style="background: white; color: black; text-align: left" |
style="background: #eee"
!Name !Dim !Equation !Applications |
Bateman-Burgers equation
|1+1 | |Fluid mechanics |
Benjamin–Bona–Mahony
|1+1 | |Fluid mechanics |
Benjamin–Ono
|1+1 | | internal waves in deep water |
Boomeron
|1+1 | \displaystyle \mathbf{v}_{xt}=u_{xx}\mathbf{b}+\mathbf{a}\times\mathbf{v}_x- 2\mathbf{v}\times(\mathbf{v}\times\mathbf{b}) |Solitons |
Boltzmann equation
|1+6 | |
Born–Infeld
|1+1 | | Electrodynamics |
Boussinesq
| 1+1 | |Fluid mechanics |
Boussinesq type equation
| 1+1 | |Fluid mechanics |
Buckmaster
|1+1 | |Thin viscous fluid sheet flow |
Cahn–Hilliard equation
|Any | |Phase separation |
Calabi flow
|Any | |
Camassa–Holm
|1+1 | |Peakons |
Carleman
|1+1 | | |
|Cauchy momentum
|any | |Momentum transport |
Chafee–Infante equation
| | | |
Clairaut equation
|any | |
Clarke's equation
|1+1 | |
Complex Monge–Ampère
|Any | lower order terms |
Constant astigmatism
|1+1 | |
Davey–Stewartson
|1+2 | \displaystyle \varphi_{xx} + c_3 \varphi_{yy} = ( |u|^2 )_x |Finite depth waves |
Degasperis–Procesi
|1+1 | |Peakons |
Dispersive long wave
|1+1 |, | |
Drinfeld–Sokolov–Wilson
|1+1 | \displaystyle w_t=2w_{xxx}+2uw_x+u_xw | |
Dym equation
|1+1 | |Solitons |
Eckhaus equation
|1+1 | |
Eikonal equation
|any | |optics |
Einstein field equations
| Any | |
Erdogan–Chatwin equation
|1+1 | |
Ernst equation
|2 | | |
Estevez–Mansfield–Clarkson equation
| | | |
Euler equations
|1+3 | |non-viscous fluids |
Fisher's equation
|1+1 | |Gene propagation |
FitzHugh–Nagumo model
|1+1 | \displaystyle w_t=\varepsilon u |
Föppl–von Kármán equations
| | |
Fujita–Storm equation
| | | |
G–K
:
class="wikitable" style="background: white; color: black; text-align: left" |
style="background: #eee"
!Name !Dim !Equation !Applications |
G equation
|1+3 | |
Generic scalar transport
|1+3 | |transport |
Ginzburg–Landau
|1+3 | |Superconductivity |
Gross–Pitaevskii
|{{math|1 + n}} | |
Gyrokinetics equation
|{{math|1 + 5}} | |
| Microturbulence in plasma
|-
||Guzmán
|{{math|1 + n}}
|
| Hamilton–Jacobi–Bellman equation for risk aversion
|-
|Any
|
|
|-
|1+3
|
|Turbulence in plasma
|-
|1+1
|
|Magnetism
|-
|1+1
|
|-
|1+1
|
|-
|1+2
|
|-
|1+2
|
|Shallow water waves
|-
|1+3
|
|Stochastics
|-
|2
|
|
|-
|Kaup
|1+1
|
|
|-
|1+1
|
|-
|any
|
|
|-
|any
|
| Relativistic quantum mechanics
|-
|1+2
|
|
|-
|1+1
|
|Physical kinetics
|-
|Korteweg–de Vries (KdV)
|1+1
|
|Shallow waves, Integrable systems
|-
|1+1
|
|
|-
|colspan="4" |There are more minor variations listed in the article on KdV equations.
|-
|Kuramoto–Sivashinsky equation
|{{math|1 + n}}
|
|}
L–Q
:
class="wikitable" style="background: white; color: black; text-align: left" |
style="background: #eee"
!Name !Dim !Equation !Applications |
Landau–Lifshitz model
|1+n | |Magnetic field in solids |
Lin–Tsien equation
|1+2 | | |
Liouville equation
|any | | |
Liouville–Bratu–Gelfand equation
|any | |
Logarithmic Schrödinger equation
|any | |
Minimal surface
|3 | |
Monge–Ampère
|any | lower order terms | |
Navier–Stokes (and its derivation) |1+3 | \rho \left( \frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_j} \right) = - \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[ \mu \left( \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) + \lambda \frac{\partial v_k}{\partial x_k} \right] + \rho f_i + mass conservation: + an equation of state to relate p and ρ, e.g. for an incompressible flow: |Fluid flow, gas flow |
Nonlinear Schrödinger (cubic)
|1+1 | |optics, water waves |
Nonlinear Schrödinger (derivative)
|1+1 | |optics, water waves |
Omega equation
|1+3 | |atmospheric physics |
Plateau
|2 | |
Pohlmeyer–Lund–Regge
|2 | | |
Porous medium
|1+n | |diffusion |
Prandtl
|1+2 |, |boundary layer |
R–Z, α–ω
:
class="wikitable" style="background: white; color: black; text-align: left" |
style="background: #eee"
!Name !Dim !Equation !Applications |
Rayleigh
|1+1 | | |
Ricci flow
|Any | |
Richards equation
|1+3 | |Variably saturated flow in porous media |
Rosenau–Hyman
|1+1 | | compacton solutions |
Sawada–Kotera
|1+1 | | |
Sack–Schamel equation
|1+1 | \ddot V + \partial_\eta \left[\frac{1}{1-\ddot V} \partial_\eta \left(\frac{1-\ddot V}{V}\right) \right] =0 |plasmas |
Schamel equation
|1+1 | |plasmas, solitons, optics |
Schlesinger
| Any | |
Seiberg–Witten
|1+3 | |
Shallow water
|1+2 | |shallow water waves |
Sine–Gordon
|1+1 | |
Sinh–Gordon
|1+1 | |
Sinh–Poisson
|1+n | |Fluid Mechanics |
Swift–Hohenberg
|any | u_t = r u - (1+\nabla^2)^2u + N(u) |pattern forming |
Thomas
|2 | | |
Thirring
|1+1 |, |Dirac field, QFT |
Toda lattice
|any | | |
Veselov–Novikov
|1+2 |, , | shallow water waves |
Vorticity equation
| | |Fluid Mechanics |
Wadati–Konno–Ichikawa–Schimizu
|1+1 | | |
WDVV equations
|Any | \sum_{\sigma, \tau = 1}^n\left({\partial^3 F \over \partial t^\alpha t^\beta t^\sigma} \eta^{\sigma \tau} {\partial^3 F \over \partial t^\mu t^\nu t^\tau} \right) = \sum_{\sigma, \tau = 1}^n\left({\partial^3 F \over \partial t^\alpha t^\nu t^\sigma} \eta^{\sigma \tau} {\partial^3 F \over \partial t^\mu t^\beta t^\tau} \right) |
WZW model
|1+1 | \mathcal{K} (\gamma^{-1} \partial^\mu \gamma \, , \, \gamma^{-1} \partial_\mu \gamma) + 2\pi k\, S^{\mathrm WZ}(\gamma) \varepsilon^{ijk} \mathcal{K} \left( \gamma^{-1} \, \frac {\partial \gamma} {\partial y^i} \, , \, \left[ \gamma^{-1} \, \frac {\partial \gamma} {\partial y^j} \, , \, \gamma^{-1} \, \frac {\partial \gamma} {\partial y^k} \right] \right) |QFT |
Whitham equation
|1+1 | |
Williams spray equation
| | |
Yamabe
|n | |
Yang–Mills (source-free)
|Any | |
Yang–Mills (self-dual/anti-self-dual)
| 4 | \quad F_{\mu \nu} = A_{\mu, \nu} - A_{\nu, \mu }+ [A_\mu, \, A_\nu] |
Yukawa
|1+n | |
Zakharov system
|1+3 | |
Zakharov–Schulman
|1+3 | |Acoustic waves |
Zeldovich–Frank-Kamenetskii equation
|1+3 | |
Zoomeron
|1+1 | |Solitons |
φ4 equation
|1+1 | | QFT |
σ-model
|1+1 | |