List of periodic functions

{{Short description|none}}

{{incomplete list|date=December 2012}}

This is a list of some well-known periodic functions. The constant function {{math|{{var|f}}{{sub| }}({{var|x}}) {{=}} {{var|c}}}}, where {{mvar|c}} is independent of {{mvar|x}}, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.

Smooth functions

All trigonometric functions listed have period 2\pi, unless otherwise stated. For the following trigonometric functions:

: {{mvar|Un}} is the {{mvar|n}}th up/down number,

: {{mvar|Bn}} is the {{mvar|n}}th Bernoulli number

: in Jacobi elliptic functions, q=e^{-\pi \frac{K(1-m)}{K(m)}}

class="wikitable sortable"
NameSymbolFormula {{refn|group=nb|Formulae are given as Taylor series or derived from other entries.}}Fourier Series
Sine \sin(x) \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n + 1)!} \sin(x)
cas (mathematics) \operatorname{cas}(x) \sin(x)+\cos(x) \sin(x) + \cos(x)
Cosine \cos(x) \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!} \cos(x)
cis (mathematics) e^{ix}, \operatorname{cis}(x) {{math| cos(x) + i sin(x)}}\cos(x)+i\sin(x)
Tangent \tan(x) \frac{\sin x}{\cos x}=\sum_{n=0}^\infty \frac{U_{2n+1} x^{2n+1}}{(2n+1)!}2\sum_{n=1}^\infty (-1)^{n-1}\sin(2nx) {{cite web|url=http://web.mit.edu/jorloff/www/18.03-esg/notes/fourier-tan.pdf|archive-url=https://web.archive.org/web/20190331130103/http://web.mit.edu/jorloff/www/18.03-esg/notes/fourier-tan.pdf|archive-date=2019-03-31|title=ES.1803 Fourier Expansion of tan(x)|first=Jeremy|last=Orloff|publisher=Massachusetts Institute of Technology|url-status=dead}}
Cotangent \cot(x) \frac{\cos x}{\sin x}=\sum_{n=0}^\infty \frac{(-1)^n 2^{2n} B_{2n} x^{2n-1}}{(2n)!}i+2i\sum_{n=1}^\infty(\cos2nx-i\sin2nx) {{citation needed|date=March 2019}}
Secant \sec(x) \frac1{\cos x}=\sum_{n=0}^\infty \frac{U_{2n} x^{2n}}{(2n)!}-
Cosecant \csc(x) \frac1{\sin x}=\sum_{n=0}^\infty \frac{(-1)^{n+1} 2 \left(2^{2n-1}-1\right) B_{2n} x^{2n-1}}{(2n)!}-
Exsecant \operatorname{exsec}(x) \sec(x)-1-
Excosecant \operatorname{excsc}(x) \csc(x)-1-
Versine \operatorname{versin}(x) 1-\cos(x)1-\cos(x)
Vercosine \operatorname{vercosin}(x) 1+\cos(x)1+\cos(x)
Coversine \operatorname{coversin}(x) 1-\sin(x)1-\sin(x)
Covercosine \operatorname{covercosin}(x) 1+\sin(x)1+\sin(x)
Haversine \operatorname{haversin}(x) \frac{1-\cos(x)}{2}\frac{1}{2}-\frac12\cos(x)
Havercosine \operatorname{havercosin}(x) \frac{1+\cos(x)}{2}\frac{1}{2}+\frac12\cos(x)
Hacoversine \operatorname{hacoversin}(x) \frac{1-\sin(x)}{2}\frac{1}{2}-\frac12\sin(x)
Hacovercosine \operatorname{hacovercosin}(x) \frac{1+\sin(x)}{2}\frac{1}{2}+\frac12\sin(x)
Jacobi elliptic function sn \operatorname{sn}(x,m) \sin \operatorname{am}(x,m)\frac{2\pi}{K(m)\sqrt m}

\sum_{n=0}^\infty \frac{q^{n+1/2}}{1-q^{2n+1}}~\sin \frac{(2n+1)\pi x}{2K(m)}

Jacobi elliptic function cn \operatorname{cn}(x,m) \cos \operatorname{am}(x,m)\frac{2\pi}{K(m)\sqrt m}

\sum_{n=0}^\infty \frac{q^{n+1/2}}{1+q^{2n+1}}~\cos\frac{(2n+1)\pi x}{2K(m)}

Jacobi elliptic function dn \operatorname{dn}(x,m) \sqrt{1-m\operatorname{sn}^2(x,m)}\frac{\pi}{2K(m)} + \frac{2\pi}{K(m)}

\sum_{n=1}^\infty \frac{q^{n}}{1+q^{2n}}~\cos\frac{n\pi x}{K(m)}

Jacobi elliptic function zn \operatorname{zn}(x,m) \int^x_0\left[\operatorname{dn}(t,m)^2-\frac{E(m)}{K(m)}\right]dt \frac{2\pi}{K(m)}\sum_{n=1}^\infty \frac{q^n}{1-q^{2n}}~\sin\frac{n\pi x}{K(m)}
Weierstrass elliptic function \weierp(x,\Lambda) \frac1{x^2}+\sum_{\lambda\in\Lambda-\{0\}}\left[\frac1{(x-\lambda)^2}-\frac1{\lambda^2}\right]
Clausen function

|Clausen function

|\operatorname{Cl}_2(x)

|-\int^x_0\ln\left|2\sin\frac{t}{2}\right|dt

|\sum_{k=1}^\infty\frac{\sin kx}{k^2}

Non-smooth functions

The following functions have period p and take x as their argument. The symbol \lfloor n \rfloor is the floor function of n and \sgn is the sign function.

K means Elliptic integral K(m)

class="wikitable sortable"
NameFormulaLimitFourier SeriesNotes
| Triangle wave \frac{4}{p} \left (x-\frac{p}{2} \left \lfloor\frac{2 x}{p}+\frac{1}{2} \right \rfloor \right )(-1)^\left \lfloor\frac{2 x}{p}+\frac{1}{2} \right \rfloor\lim_{m\rightarrow1^-}\operatorname{zs}\left(\frac{4Kx}p-K,m\right)\frac8{\pi^2}\sum_{n\,\mathrm{odd}}^{\infty} \frac{(-1)^{(n-1)/2}}{n^2} \sin\left(\frac{2\pi n x}{p}\right)

non-continuous first derivative
| Sawtooth wave2 \left( {\frac x p} - \left \lfloor {\frac 1 2} + {\frac x p} \right \rfloor \right)-\lim_{m\rightarrow1^-}\operatorname{zn}\left(\frac{2Kx}p+K,m\right) \frac2\pi\sum_{n=1}^\infty\frac{(-1)^{n-1}}n\sin\left(\frac{2\pi nx}{p}\right) non-continuous
| Square wave \sgn\left(\sin \frac{2\pi x}{p} \right) \lim_{m\rightarrow1^-}\operatorname{sn}\left(\frac{4Kx}p,m\right) \frac4\pi\sum_{n\,\mathrm{odd}}^\infty\frac1n\sin\left(\frac{2\pi nx}{p}\right) non-continuous
| Pulse waveH \left( \cos\frac{2\pi x}{p}- \cos\frac{\pi t}{p}\right)

where H is the Heaviside step function
t is how long the pulse stays at 1

|

|\frac{t}{p} + \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin\left(\frac{\pi nt}{p}\right) \cos\left(\frac{2\pi n x}{p}\right)

non-continuous
Magnitude of sine wave
with amplitude, A, and period, p/2
A\left|\sin\frac{\pi x}p\right| \frac{4A}{2\pi}+\sum_{n=1}^{\infty} \frac{4A}{\pi}\frac{1}{4n^2-1}\cos\frac{2\pi nx}p {{cite book | author=Papula, Lothar| title=Mathematische Formelsammlung: für Ingenieure und Naturwissenschaftler| publisher=Vieweg+Teubner Verlag | year=2009 | isbn=978-3834807571}}{{rp|p. 193}}non-continuous
| Cycloid\frac{p - p\cos \left( f^{(-1)}\left( \frac{2\pi x}{p} \right) \right)}{2\pi}

given f(x)=x-\sin(x) and f^{(-1)}(x) is

its real-valued inverse.

| \frac{p}{\pi} \biggl(\frac{3}4 + \sum_{n=1}^\infty \frac{\operatorname{J}_n(n)-\operatorname{J}_{n-1}(n)}n \cos\frac{2\pi nx}p\biggr)

where \operatorname{J}_n(x) is the Bessel Function of the first kind.

| non-continuous first derivative

| Dirac comb\sum_{n=-\infty}^{\infty}\delta(x-np)

|\lim_{m\rightarrow1^-}\frac{2K(m)}{p\pi}\operatorname{dn}\left(\frac{2Kx}p,m\right)

|\frac1p\sum_{n=-\infty}^{\infty}e^{\frac{2n\pi ix}p}

non-continuous
Dirichlet function

|{\displaystyle \mathbf {1} _{\mathbb {Q} }(x)={\begin{cases}1&x\in \mathbb {Q} \\0&x\notin \mathbb {Q} \end{cases}}}

|\lim_{m,n\rightarrow\infty}\cos^{2m}(n!x\pi)

| -

|non-continuous

Vector-valued functions

Doubly periodic functions

Notes

{{reflist|group=nb}}

{{DEFAULTSORT:Periodic functions}}

Category:Mathematics-related lists

Category:Types of functions