List of prime numbers#Wieferich primes

{{Short description|none}}

{{Use dmy dates|date=January 2020}}

{{Dynamic list}}

This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite.

The first 1000 prime numbers

The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows.{{Cite book | last = Lehmer | first = D. N. | author-link = Derrick Norman Lehmer | title = List of prime numbers from 1 to 10,006,721 | publisher = Carnegie Institution of Washington | volume = 165 | year = 1982 | location = Washington D.C. | id = OL16553580M | ol = 16553580M }}

class="wikitable"

!

! 1 !! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !! 10 !! 11 !! 12 !! 13 !! 14 !! 15 !! 16 !! 17 !! 18 !! 19 !! 20

style="text-align: center;"

! 1–20

| 2

35711131719232931374143475359616771
style="text-align: center;"

! 21–40

| 73

79838997101103107109113127131137139149151157163167173
style="text-align: center;"

! 41–60

| 179

181191193197199211223227229233239241251257263269271277281
style="text-align: center;"

! 61–80

| 283

293307311313317331337347349353359367373379383389397401409
style="text-align: center;"

! 81–100

| 419

421431433439443449457461463467479487491499503509521523541
style="text-align: center;"

! 101–120

| 547

557563569571577587593599601607613617619631641643647653659
style="text-align: center;"

! 121–140

| 661

673677683691701709719727733739743751757761769773787797809
style="text-align: center;"

! 141–160

| 811

821823827829839853857859863877881883887907911919929937941
style="text-align: center;"

! 161–180

| 947

953967971977983991997100910131019102110311033103910491051106110631069
style="text-align: center;"

! 181–200

| 1087

1091109310971103110911171123112911511153116311711181118711931201121312171223
style="text-align: center;"

! 201–220

| 1229

1231123712491259127712791283128912911297130113031307131913211327136113671373
style="text-align: center;"

! 221–240

| 1381

1399140914231427142914331439144714511453145914711481148314871489149314991511
style="text-align: center;"

! 241–260

| 1523

1531154315491553155915671571157915831597160116071609161316191621162716371657
style="text-align: center;"

! 261–280

| 1663

1667166916931697169917091721172317331741174717531759177717831787178918011811
style="text-align: center;"

! 281–300

| 1823

1831184718611867187118731877187918891901190719131931193319491951197319791987
style="text-align: center;"

! 301–320

| 1993

1997199920032011201720272029203920532063206920812083208720892099211121132129
style="text-align: center;"

! 321–340

| 2131

2137214121432153216121792203220722132221223722392243225122672269227322812287
style="text-align: center;"

! 341–360

| 2293

2297230923112333233923412347235123572371237723812383238923932399241124172423
style="text-align: center;"

! 361–380

| 2437

2441244724592467247324772503252125312539254325492551255725792591259326092617
style="text-align: center;"

! 381–400

| 2621

2633264726572659266326712677268326872689269326992707271127132719272927312741
style="text-align: center;"

! 401–420

| 2749

2753276727772789279127972801280328192833283728432851285728612879288728972903
style="text-align: center;"

! 421–440

| 2909

2917292729392953295729632969297129993001301130193023303730413049306130673079
style="text-align: center;"

! 441–460

| 3083

3089310931193121313731633167316931813187319132033209321732213229325132533257
style="text-align: center;"

! 461–480

| 3259

3271329933013307331333193323332933313343334733593361337133733389339134073413
style="text-align: center;"

! 481–500

| 3433

3449345734613463346734693491349935113517352735293533353935413547355735593571
style="text-align: center;"

! 501–520

| 3581

3583359336073613361736233631363736433659367136733677369136973701370937193727
style="text-align: center;"

! 521–540

| 3733

3739376137673769377937933797380338213823383338473851385338633877388138893907
style="text-align: center;"

! 541–560

| 3911

3917391939233929393139433947396739894001400340074013401940214027404940514057
style="text-align: center;"

! 561–580

| 4073

4079409140934099411141274129413341394153415741594177420142114217421942294231
style="text-align: center;"

! 581–600

| 4241

4243425342594261427142734283428942974327433743394349435743634373439143974409
style="text-align: center;"

! 601–620

| 4421

4423444144474451445744634481448344934507451345174519452345474549456145674583
style="text-align: center;"

! 621–640

| 4591

4597460346214637463946434649465146574663467346794691470347214723472947334751
style="text-align: center;"

! 641–660

| 4759

4783478747894793479948014813481748314861487148774889490349094919493149334937
style="text-align: center;"

! 661–680

| 4943

4951495749674969497349874993499950035009501150215023503950515059507750815087
style="text-align: center;"

! 681–700

| 5099

5101510751135119514751535167517151795189519752095227523152335237526152735279
style="text-align: center;"

! 701–720

| 5281

5297530353095323533353475351538153875393539954075413541754195431543754415443
style="text-align: center;"

! 721–740

| 5449

5471547754795483550155035507551955215527553155575563556955735581559156235639
style="text-align: center;"

! 741–760

| 5641

5647565156535657565956695683568956935701571157175737574157435749577957835791
style="text-align: center;"

! 761–780

| 5801

5807581358215827583958435849585158575861586758695879588158975903592359275939
style="text-align: center;"

! 781–800

| 5953

5981598760076011602960376043604760536067607360796089609161016113612161316133
style="text-align: center;"

! 801–820

| 6143

6151616361736197619962036211621762216229624762576263626962716277628762996301
style="text-align: center;"

! 821–840

| 6311

6317632363296337634363536359636163676373637963896397642164276449645164696473
style="text-align: center;"

! 841–860

| 6481

6491652165296547655165536563656965716577658165996607661966376653665966616673
style="text-align: center;"

! 861–880

| 6679

6689669167016703670967196733673767616763677967816791679368036823682768296833
style="text-align: center;"

! 881–900

| 6841

6857686368696871688368996907691169176947694969596961696769716977698369916997
style="text-align: center;"

! 901–920

| 7001

7013701970277039704370577069707971037109712171277129715171597177718771937207
style="text-align: center;"

! 921–940

| 7211

7213721972297237724372477253728372977307730973217331733373497351736973937411
style="text-align: center;"

! 941–960

| 7417

7433745174577459747774817487748974997507751775237529753775417547754975597561
style="text-align: center;"

! 961–980

| 7573

7577758375897591760376077621763976437649766976737681768776917699770377177723
style="text-align: center;"

! {{nowrap|981–1000}}

| 7727

7741775377577759778977937817782378297841785378677873787778797883790179077919

{{OEIS|A000040}}.

The Goldbach conjecture verification project reports that it has computed all primes smaller than 4×10{{sup|18}}.Tomás Oliveira e Silva, [http://www.ieeta.pt/~tos/goldbach.html Goldbach conjecture verification] {{webarchive|url=https://web.archive.org/web/20110524084452/http://www.ieeta.pt/~tos/goldbach.html |date=24 May 2011 }}. Retrieved 16 July 2013 That means 95,676,260,903,887,607 primes{{OEIS|id=A080127}} (nearly 10{{sup|17}}), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2{{e|21}}) smaller than 10{{sup|23}}. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2{{e|22}}) smaller than 10{{sup|24}}, if the Riemann hypothesis is true.{{cite web|title=Conditional Calculation of pi(10{{sup|24}})|url=http://primes.utm.edu/notes/pi(10%5E24).html|author=Jens Franke|date=29 July 2010|access-date=17 May 2011|url-status=live|archive-url=http://archive.wikiwix.com/cache/20140824032441/http://primes.utm.edu/notes/pi(10%5E24).html|archive-date=24 August 2014}}

Lists of primes by type

Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. n is a natural number (including 0) in the definitions.

= [[Balanced prime]]s =

Primes with equal-sized prime gaps after and before them, so that they are equal to the arithmetic mean of the nearest primes after and before.

  • 5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511, 1747, 1753, 1907, 2287, 2417, 2677, 2903, 2963, 3307, 3313, 3637, 3733, 4013, 4409, 4457, 4597, 4657, 4691, 4993, 5107, 5113, 5303, 5387, 5393 ({{OEIS2C|A006562}}).

= [[Bell prime]]s =

Primes that are the number of partitions of a set with n members.

2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837.

The next term has 6,539 digits. ({{OEIS2C|A051131}})

= [[Chen primes]] =

Where p is prime and p+2 is either a prime or semiprime.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 ({{OEIS2C|A109611}})

= [[Circular prime]]s =

A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331 ({{OEIS2C|A068652}})

Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (OEIS really calls this sequence circular primes, but not the above sequence):

2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111 ({{OEIS2C|A016114}})

All repunit primes are circular.

= [[Cluster prime]]s =

A cluster prime is a prime p such that every even natural number kp − 3 is the difference of two primes not exceeding p.

3, 5, 7, 11, 13, 17, 19, 23, ... ({{OEIS2C|A038134}})

All primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are:

2, 97, 127, 149, 191, 211, 223, 227, 229, 251.

= [[Cousin primes]] =

{{see also|#Twin primes|#Prime triplets|#Prime quadruplets}}

Where (p, p + 4) are both prime.

(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) ({{OEIS2C|A023200}}, {{OEIS2C|A046132}})

= [[Cuban prime]]s =

Of the form \tfrac{x^3-y^3}{x-y} where x = y + 1.

7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 ({{OEIS2C|A002407}})

Of the form \tfrac{x^3-y^3}{x-y} where x = y + 2.

13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 ({{OEIS2C|A002648}})

= [[Cullen number|Cullen primes]] =

Of the form n×2{{sup|n}} + 1.

3, 393050634124102232869567034555427371542904833 ({{OEIS2C|A050920}})

= [[Delicate prime]]s =

Primes that having any one of their (base 10) digits changed to any other value will always result in a composite number.

294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 ({{OEIS2C|A050249}})

= [[Dihedral prime]]s =

Primes that remain prime when read upside down or mirrored in a seven-segment display.

2, 5, 11, 101, 181, 1181, 1811, 18181, 108881, 110881, 118081, 120121,

121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 ({{OEIS2C|A134996}})

= [[Eisenstein primes]] without imaginary part =

Eisenstein integers that are irreducible and real numbers (primes of the form 3n − 1).

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401 ({{OEIS2C|A003627}})

= [[Emirps]] =

Primes that become a different prime when their decimal digits are reversed. The name "emirp" is the reverse of the word "prime".

13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 ({{OEIS2C|A006567}})

= [[Euclid number|Euclid primes]] =

Of the form p{{sub|n}}# + 1 (a subset of primorial primes).

3, 7, 31, 211, 2311, 200560490131 ({{OEIS2C|A018239}}{{OEIS2C|A018239}} includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.)

= [[Regular prime#Euler irregular primes|Euler irregular primes]] =

A prime p that divides Euler number E_{2n} for some 0\leq 2n\leq p-3.

19, 31, 43, 47, 61, 67, 71, 79, 101, 137, 139, 149, 193, 223, 241, 251, 263, 277, 307, 311, 349, 353, 359, 373, 379, 419, 433, 461, 463, 491, 509, 541, 563, 571, 577, 587 ({{OEIS2C|A120337}})

== [[Regular prime#Irregular pairs|Euler (''p'', ''p'' − 3) irregular primes]] ==

Primes p such that (p, p-3) is an Euler irregular pair.

149, 241, 2946901 ({{OEIS2C|A198245}})

= [[Factorial prime]]s =

Of the form n! − 1 or n! + 1.

2, 3, 5, 7, 23, 719, 5039, 39916801, 479001599, 87178291199, 10888869450418352160768000001, 265252859812191058636308479999999, 263130836933693530167218012159999999, 8683317618811886495518194401279999999 ({{OEIS2C|A088054}})

= [[Fermat prime]]s =

Of the form 2{{sup|2{{sup|n}}}} + 1.

3, 5, 17, 257, 65537 ({{OEIS2C|A019434}})

{{As of|2024|6}} these are the only known Fermat primes, and conjecturally the only Fermat primes. The probability of the existence of another Fermat prime is less than one in a billion.{{Cite arXiv|last1=Boklan|first1=Kent D.|last2=Conway|first2=John H.|date=2016|title=Expect at most one billionth of a new Fermat Prime!|eprint=1605.01371|class=math.NT}}

== Generalized [[Fermat primes]] ==

Of the form a{{sup|2{{sup|n}}}} + 1 for fixed integer a.

a = 2: 3, 5, 17, 257, 65537 ({{OEIS2C|A019434}})

a = 4: 5, 17, 257, 65537

a = 6: 7, 37, 1297

a = 8: (none exist)

a = 10: 11, 101

a = 12: 13

a = 14: 197

a = 16: 17, 257, 65537

a = 18: 19

a = 20: 401, 160001

a = 22: 23

a = 24: 577, 331777

= [[Fibonacci prime]]s =

Primes in the Fibonacci sequence F{{sub|0}} = 0, F{{sub|1}} = 1,

F{{sub|n}} = F{{sub|n−1}} + F{{sub|n−2}}.

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497, 1066340417491710595814572169, 19134702400093278081449423917 ({{OEIS2C|A005478}})

= [[Fortunate number|Fortunate primes]] =

Fortunate numbers that are prime (it has been conjectured they all are).

3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 ({{OEIS2C|A046066}})

= [[Gaussian prime]]s =

Prime elements of the Gaussian integers; equivalently, primes of the form 4n + 3.

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 ({{OEIS2C|A002145}})

= [[Good prime]]s =

Primes p{{sub|n}} for which p{{sub|n}}{{sup|2}} > p{{sub|ni}} p{{sub|n+i}} for all 1 ≤ i ≤ n−1, where p{{sub|n}} is the nth prime.

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 97, 101, 127, 149, 179, 191, 223, 227, 251, 257, 269, 307 ({{OEIS2C|A028388}})

= [[Happy prime]]s =

Happy numbers that are prime.

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093 ({{OEIS2C|A035497}})

= [[Harmonic prime]]s =

Primes p for which there are no solutions to H{{sub|k}} ≡ 0 (mod p) and H{{sub|k}} ≡ −ω{{sub|p}} (mod p) for 1 ≤ k ≤ p−2, where H{{sub|k}} denotes the k-th harmonic number and ω{{sub|p}} denotes the Wolstenholme quotient.{{Cite journal | last1 = Boyd | first1 = D. W. | title = A p-adic Study of the Partial Sums of the Harmonic Series | url = http://projecteuclid.org/euclid.em/1048515811 | doi = 10.1080/10586458.1994.10504298 | journal = Experimental Mathematics | volume = 3 | issue = 4 | pages = 287–302 | year = 1994 | id = CiteSeerX: {{URL|1=citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7026|2=10.1.1.56.7026}} | zbl = 0838.11015 | url-status = live | archive-url = https://web.archive.org/web/20160127080246/http://projecteuclid.org/euclid.em/1048515811 | archive-date = 27 January 2016}}

5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349 ({{OEIS2C|A092101}})

= [[Higgs prime]]s for squares =

Primes p for which p − 1 divides the square of the product of all earlier terms.

2, 3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 79, 101, 107, 127, 131, 139, 149, 151, 157, 173, 181, 191, 197, 199, 211, 223, 229, 263, 269, 277, 283, 311, 317, 331, 347, 349 ({{OEIS2C|A007459}})

= [[Highly cototient number| Highly cototient primes]] =

Primes that are a cototient more often than any integer below it except 1.

2, 23, 47, 59, 83, 89, 113, 167, 269, 389, 419, 509, 659, 839, 1049, 1259, 1889 ({{OEIS2C|A105440}})

= [[Home prime]]s =

For {{math|n ≥ 2}}, write the prime factorization of {{mvar|n}} in base 10 and concatenate the factors; iterate until a prime is reached.

2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277 ({{OEIS2C|A037274}})

= [[Irregular prime]]s =

Odd primes p that divide the class number of the p-th cyclotomic field.

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613 ({{OEIS2C|A000928}})

== [[Regular prime#Irregular pairs|(''p'', ''p'' − 3) irregular primes]] ==

== [[Regular prime#Irregular pairs|(''p'', ''p'' − 5) irregular primes]] ==

Primes p such that (p, p−5) is an irregular pair.{{cite journal

|last=Johnson

|first=W.

|title=Irregular Primes and Cyclotomic Invariants

|journal=Mathematics of Computation

|volume=29

|issue=129

|pages=113–120

|publisher=AMS

|year=1975

|doi=10.2307/2005468

|jstor=2005468

|doi-access=free

}}

37

== [[Regular prime#Irregular pairs|(''p'', ''p'' − 9) irregular primes]] ==

Primes p such that (p, p − 9) is an irregular pair.

67, 877 ({{OEIS2C|A212557}})

= [[Isolated prime]]s =

Primes p such that neither p − 2 nor p + 2 is prime.

2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 839, 853, 863, 877, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 ({{OEIS2C|A007510}})

= [[Leyland number|Leyland primes]] =

Of the form x{{sup|y}} + y{{sup|x}}, with 1 < x < y.

17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 ({{OEIS2C|A094133}})

= [[Full reptend prime|Long primes]] =

Primes p for which, in a given base b, \frac{b^{p-1}-1}{p} gives a cyclic number. They are also called full reptend primes. Primes p for base 10:

7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 ({{OEIS2C|A001913}})

= [[Lucas prime]]s =

Primes in the Lucas number sequence L{{sub|0}} = 2, L{{sub|1}} = 1,

L{{sub|n}} = L{{sub|n−1}} + L{{sub|n−2}}.

2,It varies whether L{{sub|0}} = 2 is included in the Lucas numbers. 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 ({{OEIS2C|A005479}})

= [[Lucky number|Lucky primes]] =

Lucky numbers that are prime.

3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 ({{OEIS2C|A031157}})

= [[Mersenne prime]]s =

Of the form 2{{sup|n}} − 1.

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 ({{OEIS2C|A000668}})

{{As of|2024}}, there are 52 known Mersenne primes. The 13th, 14th, and 52nd have respectively 157, 183, and 41,024,320 digits. This includes the largest known prime 2136,279,841−1, which is the 52nd Mersenne prime.

== Mersenne divisors ==

Primes p that divide 2{{sup|n}} − 1, for some prime number n.

3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 ({{OEIS2C|A122094}})

All Mersenne primes are, by definition, members of this sequence.

== Mersenne prime exponents ==

Primes p such that 2{{sup|p}} − 1 is prime.

2, 3, 5, 7, 13, 17, 19, 31, 61, 89,

107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423,

9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,

216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,

24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161 ({{OEIS2C|A000043}})

{{As of|2024|10}}, four more are known to be in the sequence, but it is not known whether they are the next:

74207281, 77232917, 82589933, 136279841

== [[Double Mersenne prime]]s ==

A subset of Mersenne primes of the form 2{{sup|2{{sup|p}}−1}} − 1 for prime p.

7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in {{OEIS2C|A077586}})

== Generalized [[Repunit#Repunit primes|repunit primes]] ==

Of the form (a{{sup|n}} − 1) / (a − 1) for fixed integer a.

For a = 2, these are the Mersenne primes, while for a = 10 they are the repunit primes. For other small a, they are given below:

a = 3: 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 ({{OEIS2C|A076481}})

a = 4: 5 (the only prime for a = 4)

a = 5: 31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531 ({{OEIS2C|A086122}})

a = 6: 7, 43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371 ({{OEIS2C|A165210}})

a = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457

a = 8: 73 (the only prime for a = 8)

a = 9: none exist

== Other generalizations and variations ==

Many generalizations of Mersenne primes have been defined. This include the following:

  • Primes of the form {{math|bn − (b − 1)n}},{{Cite OEIS |A121091|Smallest nexus prime of the form n^p - (n-1)^p, where p is an odd prime}}{{Cite OEIS |A121616|Primes of form (n+1)^5 - n^5}}{{Cite OEIS |A121618|Nexus primes of order 7 or primes of form n^7 - (n-1)^7}} including the Mersenne primes and the cuban primes as special cases
  • Williams primes, of the form {{math|(b − 1)·bn − 1}}

= [[Mills' constant|Mills primes]] =

Of the form ⌊θ{{sup|3{{sup|n}}}}⌋, where θ is Mills' constant. This form is prime for all positive integers n.

2, 11, 1361, 2521008887, 16022236204009818131831320183 ({{OEIS2C|A051254}})

= [[Minimal prime (number theory)|Minimal primes]] =

Primes for which there is no shorter sub-sequence of the decimal digits that form a prime. There are exactly 26 minimal primes:

2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049 ({{OEIS2C|A071062}})

= [[Newman–Shanks–Williams prime]]s =

Newman–Shanks–Williams numbers that are prime.

7, 41, 239, 9369319, 63018038201, 489133282872437279, 19175002942688032928599 ({{OEIS2C|A088165}})

= Non-generous primes =

Primes p for which the least positive primitive root is not a primitive root of p2. Three such primes are known; it is not known whether there are more.{{cite journal

|last = Paszkiewicz

| first = Andrzej

| title = A new prime p for which the least primitive root (\textrm{mod } p) and the least primitive root (\textrm{mod } p^2) are not equal

| journal = Math. Comp.

| volume = 78

| year = 2009

| issue = 266

| pages = 1193–1195

| url = https://www.ams.org/journals/mcom/2009-78-266/S0025-5718-08-02090-5/S0025-5718-08-02090-5.pdf

| doi = 10.1090/S0025-5718-08-02090-5

| publisher = American Mathematical Society

| bibcode = 2009MaCom..78.1193P

| doi-access = free

}}

2, 40487, 6692367337 ({{OEIS2C|A055578}})

= [[Palindromic primes]] =

Primes that remain the same when their decimal digits are read backwards.

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741 ({{OEIS2C|A002385}})

= Palindromic wing primes =

Primes of the form \frac{a \big( 10^m-1 \big)}{9} \pm b \times 10^{\frac{ m-1 }{2}} with 0 \le a \pm b < 10.{{Cite journal | last1 = Caldwell | first1 = C. | author1-link = Chris Caldwell (mathematician)| last2 = Dubner | first2 = H. | author2-link = Harvey Dubner | title = The near repdigit primes A_{n-k-1}B_1A_k, especially 9_{n-k-1}8_19_k | journal = Journal of Recreational Mathematics | volume = 28 | issue = 1 | pages = 1–9 | year = 1996–97}} This means all digits except the middle digit are equal.

101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 ({{OEIS2C|A077798}})

= [[Partition function (number theory)|Partition primes]] =

Partition function values that are prime.

2, 3, 5, 7, 11, 101, 17977, 10619863, 6620830889, 80630964769, 228204732751, 1171432692373, 1398341745571, 10963707205259, 15285151248481, 10657331232548839, 790738119649411319, 18987964267331664557 ({{OEIS2C|A049575}})

= [[Pell number|Pell primes]] =

Primes in the Pell number sequence P{{sub|0}} = 0, P{{sub|1}} = 1,

P{{sub|n}} = 2P{{sub|n−1}} + P{{sub|n−2}}.

2, 5, 29, 5741, 33461, 44560482149, 1746860020068409, 68480406462161287469, 13558774610046711780701, 4125636888562548868221559797461449 ({{OEIS2C|A086383}})

= [[Permutable prime]]s =

Any permutation of the decimal digits is a prime.

2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 199, 311, 337, 373, 733, 919, 991, 1111111111111111111, 11111111111111111111111 ({{OEIS2C|A003459}})

= [[Perrin number|Perrin primes]] =

Primes in the Perrin number sequence P(0) = 3, P(1) = 0, P(2) = 2,

P(n) = P(n−2) + P(n−3).

2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 ({{OEIS2C|A074788}})

= [[Pierpont prime]]s =

Of the form 2{{sup|u}}3{{sup|v}} + 1 for some integers u,v ≥ 0.

These are also class 1- primes.

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 65537, 139969, 147457 ({{OEIS2C|A005109}})

= [[Pillai prime]]s =

Primes p for which there exist n > 0 such that p divides n! + 1 and n does not divide p − 1.

23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 ({{OEIS2C|A063980}})

= Primes of the form ''n''<sup>4</sup> + 1 =

Of the form n4 + 1.{{cite journal | last = Lal | first = M. | title = Primes of the Form n4 + 1 | journal = Mathematics of Computation | volume = 21 | pages = 245–247 | publisher = AMS | date = 1967 | url = https://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0222007-9/S0025-5718-1967-0222007-9.pdf | issn = 1088-6842 | doi = 10.1090/S0025-5718-1967-0222007-9 | url-status = live | archive-url = https://web.archive.org/web/20150113214845/http://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0222007-9/S0025-5718-1967-0222007-9.pdf | archive-date = 13 January 2015| doi-access = free }}{{cite journal | last = Bohman | first = J. | title = New primes of the form n4 + 1 | journal = BIT Numerical Mathematics | volume = 13 | issue = 3 | pages = 370–372 | publisher = Springer | date = 1973 | issn = 1572-9125 | doi = 10.1007/BF01951947| s2cid = 123070671 }}

2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 ({{OEIS2C|A037896}})

= [[Primeval prime]]s =

Primes for which there are more prime permutations of some or all the decimal digits than for any smaller number.

2, 13, 37, 107, 113, 137, 1013, 1237, 1367, 10079 ({{OEIS2C|A119535}})

= [[Primorial prime]]s =

Of the form p{{sub|n}}# ± 1.

3, 5, 7, 29, 31, 211, 2309, 2311, 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (union of {{OEIS2C|A057705}} and {{OEIS2C|A018239}})

= [[Proth number|Proth primes]] =

Of the form k×2{{sup|n}} + 1, with odd k and k < 2{{sup|n}}.

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857 ({{OEIS2C|A080076}})

= [[Pythagorean prime]]s =

Of the form 4n + 1.

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449 ({{OEIS2C|A002144}})

= [[Prime quadruplet]]s =

{{see also|#Cousin primes|#Twin primes|#Prime triplets}}

Where (p, p+2, p+6, p+8) are all prime.

(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) ({{OEIS2C|A007530}}, {{OEIS2C|A136720}}, {{OEIS2C|A136721}}, {{OEIS2C|A090258}})

= [[Quartan prime]]s =

Of the form x{{sup|4}} + y{{sup|4}}, where x,y > 0.

2, 17, 97, 257, 337, 641, 881 ({{OEIS2C|A002645}})

= [[Ramanujan prime]]s =

Integers R{{sub|n}} that are the smallest to give at least n primes from x/2 to x for all x ≥ R{{sub|n}} (all such integers are primes).

2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 ({{OEIS2C|A104272}})

= [[Regular prime]]s =

Primes p that do not divide the class number of the p-th cyclotomic field.

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 ({{OEIS2C|A007703}})

= [[Repunit#Decimal repunit primes|Repunit primes]] =

Primes containing only the decimal digit 1.

11, 1111111111111111111 (19 digits), 11111111111111111111111 (23 digits) ({{OEIS2C|A004022}})

The next have 317, 1031, 49081, 86453, 109297, and 270343 digits, respectively ({{OEIS2C|A004023}}).

= [[Dirichlet's theorem on arithmetic progressions|Residue classes of primes]] =

Of the form an + d for fixed integers a and d. Also called primes congruent to d modulo a.

The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.

2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 ({{OEIS2C|A065091}})

4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 ({{OEIS2C|A002144}})

4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 ({{OEIS2C|A002145}})

6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 ({{OEIS2C|A002476}})

6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 ({{OEIS2C|A007528}})

8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 ({{OEIS2C|A007519}})

8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 ({{OEIS2C|A007520}})

8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 ({{OEIS2C|A007521}})

8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 ({{OEIS2C|A007522}})

10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 ({{OEIS2C|A030430}})

10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 ({{OEIS2C|A030431}})

10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 ({{OEIS2C|A030432}})

10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 ({{OEIS2C|A030433}})

12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 ({{OEIS2C|A068228}})

12n+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269 ({{OEIS2C|A040117}})

12n+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271 ({{OEIS2C|A068229}})

12n+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263 ({{OEIS2C|A068231}})

= [[Safe prime]]s =

Where p and (p−1) / 2 are both prime.

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907 ({{OEIS2C|A005385}})

= [[Self number|Self primes]] in base 10 =

Primes that cannot be generated by any integer added to the sum of its decimal digits.

3, 5, 7, 31, 53, 97, 211, 233, 277, 367, 389, 457, 479, 547, 569, 613, 659, 727, 839, 883, 929, 1021, 1087, 1109, 1223, 1289, 1447, 1559, 1627, 1693, 1783, 1873 ({{OEIS2C|A006378}})

= [[Sexy prime]]s =

Where (p, p + 6) are both prime.

(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199) ({{OEIS2C|A023201}}, {{OEIS2C|A046117}})

= [[Smarandache–Wellin number|Smarandache–Wellin primes]] =

Primes that are the concatenation of the first n primes written in decimal.

2, 23, 2357 ({{OEIS2C|A069151}})

The fourth Smarandache-Wellin prime is the 355-digit concatenation of the first 128 primes that end with 719.

= [[Solinas prime]]s =

Of the form 2{{sup|k}} − c{{sub|1}}·2{{sup|k−1}} − c{{sub|2}}·2{{sup|k−2}} − ... − c{{sub|k}}.

  • 3, 5, 7, 11, 13 ({{OEIS2C|A165255}})
  • 2{{sup|32}} − 5, the largest prime that fits into 32 bits of memory.https://t5k.org/lists/2small/0bit.html
  • 2{{sup|64}} − 59, the largest prime that fits into 64 bits of memory.

= [[Sophie Germain prime]]s =

Where p and 2p + 1 are both prime. A Sophie Germain prime has a corresponding safe prime.

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 ({{OEIS2C|A005384}})

= [[Stern prime]]s =

Primes that are not the sum of a smaller prime and twice the square of a nonzero integer.

2, 3, 17, 137, 227, 977, 1187, 1493 ({{OEIS2C|A042978}})

{{As of|2011}}, these are the only known Stern primes, and possibly the only existing.

= [[Super-prime]]s =

Primes with prime-numbered indexes in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).

3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 ({{OEIS2C|A006450}})

= [[Supersingular prime (moonshine theory)|Supersingular primes]] =

There are exactly fifteen supersingular primes:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 ({{OEIS2C|A002267}})

= [[Thabit prime]]s =

Of the form 3×2{{sup|n}} − 1.

2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 ({{OEIS2C|A007505}})

The primes of the form 3×2{{sup|n}} + 1 are related.

7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657 ({{OEIS2C|A039687}})

= [[Prime triplet]]s =

{{see also|#Cousin primes|#Twin primes|#Prime quadruplets}}

Where (p, p+2, p+6) or (p, p+4, p+6) are all prime.

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) ({{OEIS2C|A007529}}, {{OEIS2C|A098414}}, {{OEIS2C|A098415}})

= [[Truncatable prime]] =

== Left-truncatable ==

Primes that remain prime when the leading decimal digit is successively removed.

2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 113, 137, 167, 173, 197, 223, 283, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 523, 547, 613, 617, 643, 647, 653, 673, 683 ({{OEIS2C|A024785}})

== Right-truncatable ==

Primes that remain prime when the least significant decimal digit is successively removed.

2, 3, 5, 7, 23, 29, 31, 37, 53, 59, 71, 73, 79, 233, 239, 293, 311, 313, 317, 373, 379, 593, 599, 719, 733, 739, 797, 2333, 2339, 2393, 2399, 2939, 3119, 3137, 3733, 3739, 3793, 3797 ({{OEIS2C|A024770}})

== Two-sided ==

Primes that are both left-truncatable and right-truncatable. There are exactly fifteen two-sided primes:

2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 ({{OEIS2C|A020994}})

= [[Twin prime]]s =

{{see also|#Cousin primes|#Prime triplets|#Prime quadruplets}}

Where (p, p+2) are both prime.

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) ({{OEIS2C|A001359}}, {{OEIS2C|A006512}})

= [[Unique prime number|Unique prime]]s =

The list of primes p for which the period length of the decimal expansion of 1/p is unique (no other prime gives the same period).

3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 ({{OEIS2C|A040017}})

= [[Wagstaff prime]]s =

Of the form (2{{sup|n}} + 1) / 3.

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 ({{OEIS2C|A000979}})

Values of n:

3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 ({{OEIS2C|A000978}})

= [[Wall–Sun–Sun prime]]s =

A prime p > 5, if p{{sup|2}} divides the Fibonacci number F_{p - \left(\frac{{p}}{{5}}\right)}, where the Legendre symbol \left(\frac{{p}}{{5}}\right) is defined as

:\left(\frac{p}{5}\right) = \begin{cases} 1 &\textrm{if}\;p \equiv \pm1 \pmod 5\\ -1 &\textrm{if}\;p \equiv \pm2 \pmod 5. \end{cases}

{{As of|2018}}, no Wall-Sun-Sun primes are known.

= [[Wieferich prime]]s =

Primes p such that {{nowrap|ap − 1 ≡ 1 (mod p2)}} for fixed integer a > 1.

2p − 1 ≡ 1 (mod p2): 1093, 3511 ({{OEIS2C|A001220}})

3p − 1 ≡ 1 (mod p2): 11, 1006003 ({{OEIS2C|A014127}}){{cite book | last = Ribenboim | first = P. | author-link = Paulo Ribenboim | title = The new book of prime number records | publisher = Springer-Verlag | location = New York | page = 347 | url = https://books.google.com/books?id=72eg8bFw40kC&q=ribenboim | isbn = 0-387-94457-5| date = 22 February 1996 }}{{cite web | title = Mirimanoff's Congruence: Other Congruences | url = http://www.museumstuff.com/learn/topics/Mirimanoff%27s_congruence::sub::Other_Congruences | access-date = 26 January 2011}}{{cite journal | last1 = Gallot | first1 = Y. | last2 = Moree | first2 = P. | last3 = Zudilin | first3 = W. | title = The Erdös-Moser equation 1{{sup|k}} + 2{{sup|k}} +...+ (m−1){{sup|k}} = m{{sup|k}} revisited using continued fractions | journal = Mathematics of Computation | volume = 80 | pages = 1221–1237 | publisher = American Mathematical Society | year = 2011 | url = http://www.mpim-bonn.mpg.de/preprints/send?bid=4053 | doi = 10.1090/S0025-5718-2010-02439-1 | arxiv=0907.1356| s2cid = 16305654 }}

4p − 1 ≡ 1 (mod p2): 1093, 3511

5p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 ({{OEIS2C|A123692}})

6p − 1 ≡ 1 (mod p2): 66161, 534851, 3152573 ({{OEIS2C|A212583}})

7p − 1 ≡ 1 (mod p2): 5, 491531 ({{OEIS2C|A123693}})

8p − 1 ≡ 1 (mod p2): 3, 1093, 3511

9p − 1 ≡ 1 (mod p2): 2, 11, 1006003

10p − 1 ≡ 1 (mod p2): 3, 487, 56598313 ({{OEIS2C|A045616}})

11p − 1 ≡ 1 (mod p2): 71{{Cite book | last = Ribenboim | first = P. | author-link = Paulo Ribenboim | title = Die Welt der Primzahlen | publisher = Springer | year = 2006 | location = Berlin | page = 240 | url = https://www.gbv.de/dms/bs/toc/495799599.pdf | isbn = 3-540-34283-4 }}

12p − 1 ≡ 1 (mod p2): 2693, 123653 ({{OEIS2C|A111027}})

13p − 1 ≡ 1 (mod p2): 2, 863, 1747591 ({{OEIS2C|A128667}})

14p − 1 ≡ 1 (mod p2): 29, 353, 7596952219 ({{OEIS2C|A234810}})

15p − 1 ≡ 1 (mod p2): 29131, 119327070011 ({{OEIS2C|A242741}})

16p − 1 ≡ 1 (mod p2): 1093, 3511

17p − 1 ≡ 1 (mod p2): 2, 3, 46021, 48947 ({{OEIS2C|A128668}})

18p − 1 ≡ 1 (mod p2): 5, 7, 37, 331, 33923, 1284043 ({{OEIS2C|A244260}})

19p − 1 ≡ 1 (mod p2): 3, 7, 13, 43, 137, 63061489 ({{OEIS2C|A090968}})

20p − 1 ≡ 1 (mod p2): 281, 46457, 9377747, 122959073 ({{OEIS2C|A242982}})

21p − 1 ≡ 1 (mod p2): 2

22p − 1 ≡ 1 (mod p2): 13, 673, 1595813, 492366587, 9809862296159 ({{OEIS2C|A298951}})

23p − 1 ≡ 1 (mod p2): 13, 2481757, 13703077, 15546404183, 2549536629329 ({{OEIS2C|A128669}})

24p − 1 ≡ 1 (mod p2): 5, 25633

25p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801

{{As of|2018}}, these are all known Wieferich primes with a ≤ 25.

= [[Wilson prime]]s =

Primes p for which p{{sup|2}} divides (p−1)! + 1.

5, 13, 563 ({{OEIS2C|A007540}})

{{As of|2018}}, these are the only known Wilson primes.

= [[Wolstenholme prime]]s =

Primes p for which the binomial coefficient {{2p-1}\choose{p-1}} \equiv 1 \pmod{p^4}.

16843, 2124679 ({{OEIS2C|A088164}})

{{As of|2018}}, these are the only known Wolstenholme primes.

= [[Woodall number|Woodall primes]] =

Of the form n×2{{sup|n}} − 1.

7, 23, 383, 32212254719, 2833419889721787128217599, 195845982777569926302400511, 4776913109852041418248056622882488319 ({{OEIS2C|A050918}})

See also

{{Portal|Mathematics}}

{{div col|colwidth=20em|small=yes}}

  • {{Annotated link|Illegal prime}}
  • {{Annotated link|Largest known prime number}}
  • {{Annotated link|List of largest known primes and probable primes}}
  • {{Annotated link|List of numbers}}
  • {{Annotated link|Prime gap}}
  • {{Annotated link|Prime number theorem}}
  • {{Annotated link|Probable prime}}
  • {{Annotated link|Pseudoprime}}
  • {{Annotated link|Strong prime}}
  • {{Annotated link|Table of prime factors}}
  • {{Annotated link|Wieferich pair}}

{{div col end}}

References

{{reflist}}