List of prime numbers#Wieferich primes
{{Short description|none}}
{{Use dmy dates|date=January 2020}}
{{Dynamic list}}
This is a list of articles about prime numbers. A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem, there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes. The first 1000 primes are listed below, followed by lists of notable types of prime numbers in alphabetical order, giving their respective first terms. 1 is neither prime nor composite.
The first 1000 prime numbers
The following table lists the first 1000 primes, with 20 columns of consecutive primes in each of the 50 rows.{{Cite book | last = Lehmer | first = D. N. | author-link = Derrick Norman Lehmer | title = List of prime numbers from 1 to 10,006,721 | publisher = Carnegie Institution of Washington | volume = 165 | year = 1982 | location = Washington D.C. | id = OL16553580M | ol = 16553580M }}
{{OEIS|A000040}}.
The Goldbach conjecture verification project reports that it has computed all primes smaller than 4×10{{sup|18}}.Tomás Oliveira e Silva, [http://www.ieeta.pt/~tos/goldbach.html Goldbach conjecture verification] {{webarchive|url=https://web.archive.org/web/20110524084452/http://www.ieeta.pt/~tos/goldbach.html |date=24 May 2011 }}. Retrieved 16 July 2013 That means 95,676,260,903,887,607 primes{{OEIS|id=A080127}} (nearly 10{{sup|17}}), but they were not stored. There are known formulae to evaluate the prime-counting function (the number of primes smaller than a given value) faster than computing the primes. This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 2{{e|21}}) smaller than 10{{sup|23}}. A different computation found that there are 18,435,599,767,349,200,867,866 primes (roughly 2{{e|22}}) smaller than 10{{sup|24}}, if the Riemann hypothesis is true.{{cite web|title=Conditional Calculation of pi(10{{sup|24}})|url=http://primes.utm.edu/notes/pi(10%5E24).html|author=Jens Franke|date=29 July 2010|access-date=17 May 2011|url-status=live|archive-url=http://archive.wikiwix.com/cache/20140824032441/http://primes.utm.edu/notes/pi(10%5E24).html|archive-date=24 August 2014}}
Lists of primes by type
Below are listed the first prime numbers of many named forms and types. More details are in the article for the name. n is a natural number (including 0) in the definitions.
= [[Balanced prime]]s =
Primes with equal-sized prime gaps after and before them, so that they are equal to the arithmetic mean of the nearest primes after and before.
= [[Bell prime]]s =
Primes that are the number of partitions of a set with n members.
2, 5, 877, 27644437, 35742549198872617291353508656626642567, 359334085968622831041960188598043661065388726959079837.
The next term has 6,539 digits. ({{OEIS2C|A051131}})
= [[Chen primes]] =
Where p is prime and p+2 is either a prime or semiprime.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 67, 71, 83, 89, 101, 107, 109, 113, 127, 131, 137, 139, 149, 157, 167, 179, 181, 191, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 281, 293, 307, 311, 317, 337, 347, 353, 359, 379, 389, 401, 409 ({{OEIS2C|A109611}})
= [[Circular prime]]s =
A circular prime number is a number that remains prime on any cyclic rotation of its digits (in base 10).
2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197, 199, 311, 337, 373, 719, 733, 919, 971, 991, 1193, 1931, 3119, 3779, 7793, 7937, 9311, 9377, 11939, 19391, 19937, 37199, 39119, 71993, 91193, 93719, 93911, 99371, 193939, 199933, 319993, 331999, 391939, 393919, 919393, 933199, 939193, 939391, 993319, 999331 ({{OEIS2C|A068652}})
Some sources only list the smallest prime in each cycle, for example, listing 13, but omitting 31 (OEIS really calls this sequence circular primes, but not the above sequence):
2, 3, 5, 7, 11, 13, 17, 37, 79, 113, 197, 199, 337, 1193, 3779, 11939, 19937, 193939, 199933, 1111111111111111111, 11111111111111111111111 ({{OEIS2C|A016114}})
All repunit primes are circular.
= [[Cluster prime]]s =
= [[Cousin primes]] =
{{see also|#Twin primes|#Prime triplets|#Prime quadruplets}}
Where (p, p + 4) are both prime.
(3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47), (67, 71), (79, 83), (97, 101), (103, 107), (109, 113), (127, 131), (163, 167), (193, 197), (223, 227), (229, 233), (277, 281) ({{OEIS2C|A023200}}, {{OEIS2C|A046132}})
= [[Cuban prime]]s =
Of the form where x = y + 1.
7, 19, 37, 61, 127, 271, 331, 397, 547, 631, 919, 1657, 1801, 1951, 2269, 2437, 2791, 3169, 3571, 4219, 4447, 5167, 5419, 6211, 7057, 7351, 8269, 9241, 10267, 11719, 12097, 13267, 13669, 16651, 19441, 19927, 22447, 23497, 24571, 25117, 26227, 27361, 33391, 35317 ({{OEIS2C|A002407}})
Of the form where x = y + 2.
13, 109, 193, 433, 769, 1201, 1453, 2029, 3469, 3889, 4801, 10093, 12289, 13873, 18253, 20173, 21169, 22189, 28813, 37633, 43201, 47629, 60493, 63949, 65713, 69313, 73009, 76801, 84673, 106033, 108301, 112909, 115249 ({{OEIS2C|A002648}})
= [[Cullen number|Cullen primes]] =
Of the form n×2{{sup|n}} + 1.
3, 393050634124102232869567034555427371542904833 ({{OEIS2C|A050920}})
= [[Delicate prime]]s =
Primes that having any one of their (base 10) digits changed to any other value will always result in a composite number.
294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201, 3085553, 3326489, 4393139 ({{OEIS2C|A050249}})
= [[Dihedral prime]]s =
= [[Eisenstein primes]] without imaginary part =
= [[Emirps]] =
Primes that become a different prime when their decimal digits are reversed. The name "emirp" is the reverse of the word "prime".
13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157, 167, 179, 199, 311, 337, 347, 359, 389, 701, 709, 733, 739, 743, 751, 761, 769, 907, 937, 941, 953, 967, 971, 983, 991 ({{OEIS2C|A006567}})
= [[Euclid number|Euclid primes]] =
Of the form p{{sub|n}}# + 1 (a subset of primorial primes).
3, 7, 31, 211, 2311, 200560490131 ({{OEIS2C|A018239}}{{OEIS2C|A018239}} includes 2 = empty product of first 0 primes plus 1, but 2 is excluded in this list.)
= [[Regular prime#Euler irregular primes|Euler irregular primes]] =
== [[Regular prime#Irregular pairs|Euler (''p'', ''p'' − 3) irregular primes]] ==
= [[Factorial prime]]s =
= [[Fermat prime]]s =
Of the form 2{{sup|2{{sup|n}}}} + 1.
3, 5, 17, 257, 65537 ({{OEIS2C|A019434}})
{{As of|2024|6}} these are the only known Fermat primes, and conjecturally the only Fermat primes. The probability of the existence of another Fermat prime is less than one in a billion.{{Cite arXiv|last1=Boklan|first1=Kent D.|last2=Conway|first2=John H.|date=2016|title=Expect at most one billionth of a new Fermat Prime!|eprint=1605.01371|class=math.NT}}
== Generalized [[Fermat primes]] ==
= [[Fibonacci prime]]s =
= [[Fortunate number|Fortunate primes]] =
= [[Gaussian prime]]s =
Prime elements of the Gaussian integers; equivalently, primes of the form 4n + 3.
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503 ({{OEIS2C|A002145}})
= [[Good prime]]s =
= [[Happy prime]]s =
= [[Harmonic prime]]s =
Primes p for which there are no solutions to H{{sub|k}} ≡ 0 (mod p) and H{{sub|k}} ≡ −ω{{sub|p}} (mod p) for 1 ≤ k ≤ p−2, where H{{sub|k}} denotes the k-th harmonic number and ω{{sub|p}} denotes the Wolstenholme quotient.{{Cite journal | last1 = Boyd | first1 = D. W. | title = A p-adic Study of the Partial Sums of the Harmonic Series | url = http://projecteuclid.org/euclid.em/1048515811 | doi = 10.1080/10586458.1994.10504298 | journal = Experimental Mathematics | volume = 3 | issue = 4 | pages = 287–302 | year = 1994 | id = CiteSeerX: {{URL|1=citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7026|2=10.1.1.56.7026}} | zbl = 0838.11015 | url-status = live | archive-url = https://web.archive.org/web/20160127080246/http://projecteuclid.org/euclid.em/1048515811 | archive-date = 27 January 2016}}
5, 13, 17, 23, 41, 67, 73, 79, 107, 113, 139, 149, 157, 179, 191, 193, 223, 239, 241, 251, 263, 277, 281, 293, 307, 311, 317, 331, 337, 349 ({{OEIS2C|A092101}})
= [[Higgs prime]]s for squares =
= [[Highly cototient number| Highly cototient primes]] =
= [[Home prime]]s =
For {{math|n ≥ 2}}, write the prime factorization of {{mvar|n}} in base 10 and concatenate the factors; iterate until a prime is reached.
2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277 ({{OEIS2C|A037274}})
= [[Irregular prime]]s =
== [[Regular prime#Irregular pairs|(''p'', ''p'' − 3) irregular primes]] ==
(See Wolstenholme prime)
== [[Regular prime#Irregular pairs|(''p'', ''p'' − 5) irregular primes]] ==
Primes p such that (p, p−5) is an irregular pair.{{cite journal
|last=Johnson
|first=W.
|title=Irregular Primes and Cyclotomic Invariants
|journal=Mathematics of Computation
|volume=29
|issue=129
|pages=113–120
|publisher=AMS
|year=1975
|doi=10.2307/2005468
|jstor=2005468
|doi-access=free
}}
== [[Regular prime#Irregular pairs|(''p'', ''p'' − 9) irregular primes]] ==
= [[Isolated prime]]s =
Primes p such that neither p − 2 nor p + 2 is prime.
2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 839, 853, 863, 877, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 ({{OEIS2C|A007510}})
= [[Leyland number|Leyland primes]] =
= [[Full reptend prime|Long primes]] =
Primes p for which, in a given base b, gives a cyclic number. They are also called full reptend primes. Primes p for base 10:
7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593 ({{OEIS2C|A001913}})
= [[Lucas prime]]s =
Primes in the Lucas number sequence L{{sub|0}} = 2, L{{sub|1}} = 1,
L{{sub|n}} = L{{sub|n−1}} + L{{sub|n−2}}.
2,It varies whether L{{sub|0}} = 2 is included in the Lucas numbers. 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 ({{OEIS2C|A005479}})
= [[Lucky number|Lucky primes]] =
= [[Mersenne prime]]s =
Of the form 2{{sup|n}} − 1.
3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 ({{OEIS2C|A000668}})
{{As of|2024}}, there are 52 known Mersenne primes. The 13th, 14th, and 52nd have respectively 157, 183, and 41,024,320 digits. This includes the largest known prime 2136,279,841−1, which is the 52nd Mersenne prime.
== Mersenne divisors ==
Primes p that divide 2{{sup|n}} − 1, for some prime number n.
3, 7, 23, 31, 47, 89, 127, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, 1103, 1319, 1367, 1399, 1433, 1439, 1487, 1823, 1913, 2039, 2063, 2089, 2207, 2351, 2383, 2447, 2687, 2767, 2879, 2903, 2999, 3023, 3119, 3167, 3343 ({{OEIS2C|A122094}})
All Mersenne primes are, by definition, members of this sequence.
== Mersenne prime exponents ==
Primes p such that 2{{sup|p}} − 1 is prime.
2, 3, 5, 7, 13, 17, 19, 31, 61, 89,
107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423,
9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,
24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161 ({{OEIS2C|A000043}})
{{As of|2024|10}}, four more are known to be in the sequence, but it is not known whether they are the next:
74207281, 77232917, 82589933, 136279841
== [[Double Mersenne prime]]s ==
A subset of Mersenne primes of the form 2{{sup|2{{sup|p}}−1}} − 1 for prime p.
7, 127, 2147483647, 170141183460469231731687303715884105727 (primes in {{OEIS2C|A077586}})
== Generalized [[Repunit#Repunit primes|repunit primes]] ==
Of the form (a{{sup|n}} − 1) / (a − 1) for fixed integer a.
For a = 2, these are the Mersenne primes, while for a = 10 they are the repunit primes. For other small a, they are given below:
a = 3: 13, 1093, 797161, 3754733257489862401973357979128773, 6957596529882152968992225251835887181478451547013 ({{OEIS2C|A076481}})
a = 4: 5 (the only prime for a = 4)
a = 5: 31, 19531, 12207031, 305175781, 177635683940025046467781066894531, 14693679385278593849609206715278070972733319459651094018859396328480215743184089660644531 ({{OEIS2C|A086122}})
a = 6: 7, 43, 55987, 7369130657357778596659, 3546245297457217493590449191748546458005595187661976371 ({{OEIS2C|A165210}})
a = 7: 2801, 16148168401, 85053461164796801949539541639542805770666392330682673302530819774105141531698707146930307290253537320447270457
a = 8: 73 (the only prime for a = 8)
a = 9: none exist
== Other generalizations and variations ==
Many generalizations of Mersenne primes have been defined. This include the following:
- Primes of the form {{math|bn − (b − 1)n}},{{Cite OEIS |A121091|Smallest nexus prime of the form n^p - (n-1)^p, where p is an odd prime}}{{Cite OEIS |A121616|Primes of form (n+1)^5 - n^5}}{{Cite OEIS |A121618|Nexus primes of order 7 or primes of form n^7 - (n-1)^7}} including the Mersenne primes and the cuban primes as special cases
- Williams primes, of the form {{math|(b − 1)·bn − 1}}
= [[Mills' constant|Mills primes]] =
= [[Minimal prime (number theory)|Minimal primes]] =
= [[Newman–Shanks–Williams prime]]s =
= Non-generous primes =
Primes p for which the least positive primitive root is not a primitive root of p2. Three such primes are known; it is not known whether there are more.{{cite journal
|last = Paszkiewicz
| first = Andrzej
| title = A new prime for which the least primitive root and the least primitive root are not equal
| journal = Math. Comp.
| volume = 78
| year = 2009
| issue = 266
| pages = 1193–1195
| url = https://www.ams.org/journals/mcom/2009-78-266/S0025-5718-08-02090-5/S0025-5718-08-02090-5.pdf
| doi = 10.1090/S0025-5718-08-02090-5
| publisher = American Mathematical Society
| bibcode = 2009MaCom..78.1193P
| doi-access = free
}}
2, 40487, 6692367337 ({{OEIS2C|A055578}})
= [[Palindromic primes]] =
= Palindromic wing primes =
Primes of the form with .{{Cite journal | last1 = Caldwell | first1 = C. | author1-link = Chris Caldwell (mathematician)| last2 = Dubner | first2 = H. | author2-link = Harvey Dubner | title = The near repdigit primes , especially | journal = Journal of Recreational Mathematics | volume = 28 | issue = 1 | pages = 1–9 | year = 1996–97}} This means all digits except the middle digit are equal.
101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 11311, 11411, 33533, 77377, 77477, 77977, 1114111, 1117111, 3331333, 3337333, 7772777, 7774777, 7778777, 111181111, 111191111, 777767777, 77777677777, 99999199999 ({{OEIS2C|A077798}})
= [[Partition function (number theory)|Partition primes]] =
= [[Pell number|Pell primes]] =
= [[Permutable prime]]s =
= [[Perrin number|Perrin primes]] =
= [[Pierpont prime]]s =
= [[Pillai prime]]s =
= Primes of the form ''n''<sup>4</sup> + 1 =
Of the form n4 + 1.{{cite journal | last = Lal | first = M. | title = Primes of the Form n4 + 1 | journal = Mathematics of Computation | volume = 21 | pages = 245–247 | publisher = AMS | date = 1967 | url = https://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0222007-9/S0025-5718-1967-0222007-9.pdf | issn = 1088-6842 | doi = 10.1090/S0025-5718-1967-0222007-9 | url-status = live | archive-url = https://web.archive.org/web/20150113214845/http://www.ams.org/journals/mcom/1967-21-098/S0025-5718-1967-0222007-9/S0025-5718-1967-0222007-9.pdf | archive-date = 13 January 2015| doi-access = free }}{{cite journal | last = Bohman | first = J. | title = New primes of the form n4 + 1 | journal = BIT Numerical Mathematics | volume = 13 | issue = 3 | pages = 370–372 | publisher = Springer | date = 1973 | issn = 1572-9125 | doi = 10.1007/BF01951947| s2cid = 123070671 }}
2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 ({{OEIS2C|A037896}})
= [[Primeval prime]]s =
= [[Primorial prime]]s =
= [[Proth number|Proth primes]] =
= [[Pythagorean prime]]s =
= [[Prime quadruplet]]s =
{{see also|#Cousin primes|#Twin primes|#Prime triplets}}
Where (p, p+2, p+6, p+8) are all prime.
(5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197, 199), (821, 823, 827, 829), (1481, 1483, 1487, 1489), (1871, 1873, 1877, 1879), (2081, 2083, 2087, 2089), (3251, 3253, 3257, 3259), (3461, 3463, 3467, 3469), (5651, 5653, 5657, 5659), (9431, 9433, 9437, 9439) ({{OEIS2C|A007530}}, {{OEIS2C|A136720}}, {{OEIS2C|A136721}}, {{OEIS2C|A090258}})
= [[Quartan prime]]s =
= [[Ramanujan prime]]s =
Integers R{{sub|n}} that are the smallest to give at least n primes from x/2 to x for all x ≥ R{{sub|n}} (all such integers are primes).
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491 ({{OEIS2C|A104272}})
= [[Regular prime]]s =
Primes p that do not divide the class number of the p-th cyclotomic field.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 239, 241, 251, 269, 277, 281 ({{OEIS2C|A007703}})
= [[Repunit#Decimal repunit primes|Repunit primes]] =
Primes containing only the decimal digit 1.
11, 1111111111111111111 (19 digits), 11111111111111111111111 (23 digits) ({{OEIS2C|A004022}})
The next have 317, 1031, 49081, 86453, 109297, and 270343 digits, respectively ({{OEIS2C|A004023}}).
= [[Dirichlet's theorem on arithmetic progressions|Residue classes of primes]] =
Of the form an + d for fixed integers a and d. Also called primes congruent to d modulo a.
The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.
2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 ({{OEIS2C|A065091}})
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 ({{OEIS2C|A002144}})
4n+3: 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107 ({{OEIS2C|A002145}})
6n+1: 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139 ({{OEIS2C|A002476}})
6n+5: 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113 ({{OEIS2C|A007528}})
8n+1: 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353 ({{OEIS2C|A007519}})
8n+3: 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251 ({{OEIS2C|A007520}})
8n+5: 5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269 ({{OEIS2C|A007521}})
8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 ({{OEIS2C|A007522}})
10n+1: 11, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241, 251, 271, 281 ({{OEIS2C|A030430}})
10n+3: 3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263 ({{OEIS2C|A030431}})
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 ({{OEIS2C|A030432}})
10n+9: 19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349, 359 ({{OEIS2C|A030433}})
12n+1: 13, 37, 61, 73, 97, 109, 157, 181, 193, 229, 241, 277, 313, 337, 349 ({{OEIS2C|A068228}})
12n+5: 5, 17, 29, 41, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269 ({{OEIS2C|A040117}})
12n+7: 7, 19, 31, 43, 67, 79, 103, 127, 139, 151, 163, 199, 211, 223, 271 ({{OEIS2C|A068229}})
12n+11: 11, 23, 47, 59, 71, 83, 107, 131, 167, 179, 191, 227, 239, 251, 263 ({{OEIS2C|A068231}})
= [[Safe prime]]s =
= [[Self number|Self primes]] in base 10 =
= [[Sexy prime]]s =
Where (p, p + 6) are both prime.
(5, 11), (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37), (37, 43), (41, 47), (47, 53), (53, 59), (61, 67), (67, 73), (73, 79), (83, 89), (97, 103), (101, 107), (103, 109), (107, 113), (131, 137), (151, 157), (157, 163), (167, 173), (173, 179), (191, 197), (193, 199) ({{OEIS2C|A023201}}, {{OEIS2C|A046117}})
= [[Smarandache–Wellin number|Smarandache–Wellin primes]] =
= [[Solinas prime]]s =
Of the form 2{{sup|k}} − c{{sub|1}}·2{{sup|k−1}} − c{{sub|2}}·2{{sup|k−2}} − ... − c{{sub|k}}.
= [[Sophie Germain prime]]s =
= [[Stern prime]]s =
= [[Super-prime]]s =
Primes with prime-numbered indexes in the sequence of prime numbers (the 2nd, 3rd, 5th, ... prime).
3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991 ({{OEIS2C|A006450}})
= [[Supersingular prime (moonshine theory)|Supersingular primes]] =
= [[Thabit prime]]s =
Of the form 3×2{{sup|n}} − 1.
2, 5, 11, 23, 47, 191, 383, 6143, 786431, 51539607551, 824633720831, 26388279066623, 108086391056891903, 55340232221128654847, 226673591177742970257407 ({{OEIS2C|A007505}})
The primes of the form 3×2{{sup|n}} + 1 are related.
7, 13, 97, 193, 769, 12289, 786433, 3221225473, 206158430209, 6597069766657 ({{OEIS2C|A039687}})
= [[Prime triplet]]s =
{{see also|#Cousin primes|#Twin primes|#Prime quadruplets}}
Where (p, p+2, p+6) or (p, p+4, p+6) are all prime.
(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), (193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 283), (307, 311, 313), (311, 313, 317), (347, 349, 353) ({{OEIS2C|A007529}}, {{OEIS2C|A098414}}, {{OEIS2C|A098415}})
= [[Truncatable prime]] =
== Left-truncatable ==
== Right-truncatable ==
== Two-sided ==
= [[Twin prime]]s =
{{see also|#Cousin primes|#Prime triplets|#Prime quadruplets}}
Where (p, p+2) are both prime.
(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) ({{OEIS2C|A001359}}, {{OEIS2C|A006512}})
= [[Unique prime number|Unique prime]]s =
The list of primes p for which the period length of the decimal expansion of 1/p is unique (no other prime gives the same period).
3, 11, 37, 101, 9091, 9901, 333667, 909091, 99990001, 999999000001, 9999999900000001, 909090909090909091, 1111111111111111111, 11111111111111111111111, 900900900900990990990991 ({{OEIS2C|A040017}})
= [[Wagstaff prime]]s =
Of the form (2{{sup|n}} + 1) / 3.
3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243 ({{OEIS2C|A000979}})
Values of n:
3, 5, 7, 11, 13, 17, 19, 23, 31, 43, 61, 79, 101, 127, 167, 191, 199, 313, 347, 701, 1709, 2617, 3539, 5807, 10501, 10691, 11279, 12391, 14479, 42737, 83339, 95369, 117239, 127031, 138937, 141079, 267017, 269987, 374321 ({{OEIS2C|A000978}})
= [[Wall–Sun–Sun prime]]s =
A prime p > 5, if p{{sup|2}} divides the Fibonacci number , where the Legendre symbol is defined as
:
{{As of|2018}}, no Wall-Sun-Sun primes are known.
= [[Wieferich prime]]s =
Primes p such that {{nowrap|ap − 1 ≡ 1 (mod p2)}} for fixed integer a > 1.
2p − 1 ≡ 1 (mod p2): 1093, 3511 ({{OEIS2C|A001220}})
3p − 1 ≡ 1 (mod p2): 11, 1006003 ({{OEIS2C|A014127}}){{cite book | last = Ribenboim | first = P. | author-link = Paulo Ribenboim | title = The new book of prime number records | publisher = Springer-Verlag | location = New York | page = 347 | url = https://books.google.com/books?id=72eg8bFw40kC&q=ribenboim | isbn = 0-387-94457-5| date = 22 February 1996 }}{{cite web | title = Mirimanoff's Congruence: Other Congruences | url = http://www.museumstuff.com/learn/topics/Mirimanoff%27s_congruence::sub::Other_Congruences | access-date = 26 January 2011}}{{cite journal | last1 = Gallot | first1 = Y. | last2 = Moree | first2 = P. | last3 = Zudilin | first3 = W. | title = The Erdös-Moser equation 1{{sup|k}} + 2{{sup|k}} +...+ (m−1){{sup|k}} = m{{sup|k}} revisited using continued fractions | journal = Mathematics of Computation | volume = 80 | pages = 1221–1237 | publisher = American Mathematical Society | year = 2011 | url = http://www.mpim-bonn.mpg.de/preprints/send?bid=4053 | doi = 10.1090/S0025-5718-2010-02439-1 | arxiv=0907.1356| s2cid = 16305654 }}
4p − 1 ≡ 1 (mod p2): 1093, 3511
5p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801 ({{OEIS2C|A123692}})
6p − 1 ≡ 1 (mod p2): 66161, 534851, 3152573 ({{OEIS2C|A212583}})
7p − 1 ≡ 1 (mod p2): 5, 491531 ({{OEIS2C|A123693}})
8p − 1 ≡ 1 (mod p2): 3, 1093, 3511
9p − 1 ≡ 1 (mod p2): 2, 11, 1006003
10p − 1 ≡ 1 (mod p2): 3, 487, 56598313 ({{OEIS2C|A045616}})
11p − 1 ≡ 1 (mod p2): 71{{Cite book | last = Ribenboim | first = P. | author-link = Paulo Ribenboim | title = Die Welt der Primzahlen | publisher = Springer | year = 2006 | location = Berlin | page = 240 | url = https://www.gbv.de/dms/bs/toc/495799599.pdf | isbn = 3-540-34283-4 }}
12p − 1 ≡ 1 (mod p2): 2693, 123653 ({{OEIS2C|A111027}})
13p − 1 ≡ 1 (mod p2): 2, 863, 1747591 ({{OEIS2C|A128667}})
14p − 1 ≡ 1 (mod p2): 29, 353, 7596952219 ({{OEIS2C|A234810}})
15p − 1 ≡ 1 (mod p2): 29131, 119327070011 ({{OEIS2C|A242741}})
16p − 1 ≡ 1 (mod p2): 1093, 3511
17p − 1 ≡ 1 (mod p2): 2, 3, 46021, 48947 ({{OEIS2C|A128668}})
18p − 1 ≡ 1 (mod p2): 5, 7, 37, 331, 33923, 1284043 ({{OEIS2C|A244260}})
19p − 1 ≡ 1 (mod p2): 3, 7, 13, 43, 137, 63061489 ({{OEIS2C|A090968}})
20p − 1 ≡ 1 (mod p2): 281, 46457, 9377747, 122959073 ({{OEIS2C|A242982}})
21p − 1 ≡ 1 (mod p2): 2
22p − 1 ≡ 1 (mod p2): 13, 673, 1595813, 492366587, 9809862296159 ({{OEIS2C|A298951}})
23p − 1 ≡ 1 (mod p2): 13, 2481757, 13703077, 15546404183, 2549536629329 ({{OEIS2C|A128669}})
24p − 1 ≡ 1 (mod p2): 5, 25633
25p − 1 ≡ 1 (mod p2): 2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801
{{As of|2018}}, these are all known Wieferich primes with a ≤ 25.
= [[Wilson prime]]s =
= [[Wolstenholme prime]]s =
Primes p for which the binomial coefficient
16843, 2124679 ({{OEIS2C|A088164}})
{{As of|2018}}, these are the only known Wolstenholme primes.
= [[Woodall number|Woodall primes]] =
See also
{{Portal|Mathematics}}
{{div col|colwidth=20em|small=yes}}
- {{Annotated link|Illegal prime}}
- {{Annotated link|Largest known prime number}}
- {{Annotated link|List of largest known primes and probable primes}}
- {{Annotated link|List of numbers}}
- {{Annotated link|Prime gap}}
- {{Annotated link|Prime number theorem}}
- {{Annotated link|Probable prime}}
- {{Annotated link|Pseudoprime}}
- {{Annotated link|Strong prime}}
- {{Annotated link|Table of prime factors}}
- {{Annotated link|Wieferich pair}}
{{div col end}}
References
{{reflist}}
External links
- [https://prime-numbers.de] All prime numbers from 31 to 6,469,693,189 for free download.
- [http://primes.utm.edu/lists/ Lists of Primes] at the Prime Pages.
- [http://primes.utm.edu/nthprime/ The Nth Prime Page] Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range.
- [http://www.rsok.com/~jrm/printprimes.html Interface to a list of the first 98 million primes] (primes less than 2,000,000,000)
- {{MathWorld|title=Prime Number Sequences|urlname=topics/PrimeNumberSequences|ref=none}}
- [http://oeis.org/wiki/Index_to_OEIS:_Section_Pri Selected prime related sequences] in OEIS.
- Fischer, R. [http://www.fermatquotient.com/FermatQuotienten/FermQ_Sort.txt Thema: Fermatquotient B^(P−1) == 1 (mod P^2)] {{in lang|de}} (Lists Wieferich primes in all bases up to 1052)
- {{Cite web |last=Padilla |first=Tony |date=7 February 2013 |title=New Largest Known Prime Number |url=https://www.youtube.com/watch?v=QSEKzFGpCQs |url-status=live |archive-url=https://ghostarchive.org/varchive/youtube/20211102/QSEKzFGpCQs |archive-date=2021-11-02 |website=Numberphile |publisher=Brady Haran |ref=none}}{{cbignore}}
{{Prime number classes}}