harmonic number

{{Short description|Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n}}

{{other uses}}

{{Use American English|date = March 2019}}

Image:HarmonicNumbers.svg.]]

In mathematics, the {{mvar|n}}-th harmonic number is the sum of the reciprocals of the first {{mvar|n}} natural numbers:{{Cite book |last=Knuth |first=Donald |title=The Art of Computer Programming |publisher=Addison-Wesley |year=1997 |isbn=0-201-89683-4 |edition=3rd |pages=75–79 |language=en}}

H_n= 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} =\sum_{k=1}^n \frac{1}{k}.

Starting from {{math|1=n = 1}}, the sequence of harmonic numbers begins:

1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \dots

Harmonic numbers are related to the harmonic mean in that the {{mvar|n}}-th harmonic number is also {{mvar|n}} times the reciprocal of the harmonic mean of the first {{mvar|n}} positive integers.

Harmonic numbers have been studied since antiquity and are important in various branches of number theory. They are sometimes loosely termed harmonic series, are closely related to the Riemann zeta function, and appear in the expressions of various special functions.

The harmonic numbers roughly approximate the natural logarithm function{{rp|143}} and thus the associated harmonic series grows without limit, albeit slowly. In 1737, Leonhard Euler used the divergence of the harmonic series to provide a new proof of the infinity of prime numbers. His work was extended into the complex plane by Bernhard Riemann in 1859, leading directly to the celebrated Riemann hypothesis about the distribution of prime numbers.

When the value of a large quantity of items has a Zipf's law distribution, the total value of the {{mvar|n}} most-valuable items is proportional to the {{mvar|n}}-th harmonic number. This leads to a variety of surprising conclusions regarding the long tail and the theory of network value.

The Bertrand-Chebyshev theorem implies that, except for the case {{math|1=n = 1}}, the harmonic numbers are never integers.{{Cite book

| first1 = Ronald L. | last1 = Graham

| first2 = Donald E. | last2 = Knuth

| first3 = Oren | last3 = Patashnik

| title = Concrete Mathematics

| year = 1994

| publisher = Addison-Wesley

| title-link = Concrete Mathematics

}}

class="wikitable infobox collapsible collapsed" style="line-height:0.8;text-align:left;white-space:nowrap;"

|+ The first 40 harmonic numbers

! rowspan="2" style="padding-top:1em;"|n !! colspan="4"|Harmonic number, Hn

colspan="2"|expressed as a fractiondecimalrelative size
style="text-align:right;"|1style="text-align:center;" colspan="2"|1{{bartable|120}}
style="text-align:right;"|2style="border-right:none;padding-right:0;text-align:right;"|3style="border-left:none;padding-left:0;"|/2{{bartable|1.520}}
style="text-align:right;"|3style="border-right:none;padding-right:0;text-align:right;"|11style="border-left:none;padding-left:0;"|/6~{{bartable|1.8333320}}
style="text-align:right;"|4style="border-right:none;padding-right:0;text-align:right;"|25style="border-left:none;padding-left:0;"|/12~{{bartable|2.0833320}}
style="text-align:right;"|5style="border-right:none;padding-right:0;text-align:right;"|137style="border-left:none;padding-left:0;"|/60~{{bartable|2.2833320}}
style="text-align:right;"|6style="border-right:none;padding-right:0;text-align:right;"|49style="border-left:none;padding-left:0;"|/20{{bartable|2.4520}}
style="text-align:right;"|7style="border-right:none;padding-right:0;text-align:right;"|363style="border-left:none;padding-left:0;"|/140~{{bartable|2.5928620}}
style="text-align:right;"|8style="border-right:none;padding-right:0;text-align:right;"|761style="border-left:none;padding-left:0;"|/280~{{bartable|2.7178620}}
style="text-align:right;"|9style="border-right:none;padding-right:0;text-align:right;"|7 129style="border-left:none;padding-left:0;"|/2 520~{{bartable|2.8289720}}
style="text-align:right;"|10style="border-right:none;padding-right:0;text-align:right;"|7 381style="border-left:none;padding-left:0;"|/2 520~{{bartable|2.9289720}}
style="text-align:right;"|11style="border-right:none;padding-right:0;text-align:right;"|83 711style="border-left:none;padding-left:0;"|/27 720~{{bartable|3.0198820}}
style="text-align:right;"|12style="border-right:none;padding-right:0;text-align:right;"|86 021style="border-left:none;padding-left:0;"|/27 720~{{bartable|3.1032120}}
style="text-align:right;"|13style="border-right:none;padding-right:0;text-align:right;"|1 145 993style="border-left:none;padding-left:0;"|/360 360~{{bartable|3.1801320}}
style="text-align:right;"|14style="border-right:none;padding-right:0;text-align:right;"|1 171 733style="border-left:none;padding-left:0;"|/360 360~{{bartable|3.2515620}}
style="text-align:right;"|15style="border-right:none;padding-right:0;text-align:right;"|1 195 757style="border-left:none;padding-left:0;"|/360 360~{{bartable|3.3182320}}
style="text-align:right;"|16style="border-right:none;padding-right:0;text-align:right;"|2 436 559style="border-left:none;padding-left:0;"|/720 720~{{bartable|3.3807320}}
style="text-align:right;"|17style="border-right:none;padding-right:0;text-align:right;"|42 142 223style="border-left:none;padding-left:0;"|/12 252 240~{{bartable|3.4395520}}
style="text-align:right;"|18style="border-right:none;padding-right:0;text-align:right;"|14 274 301style="border-left:none;padding-left:0;"|/4 084 080~{{bartable|3.4951120}}
style="text-align:right;"|19style="border-right:none;padding-right:0;text-align:right;"|275 295 799style="border-left:none;padding-left:0;"|/77 597 520~{{bartable|3.5477420}}
style="text-align:right;"|20style="border-right:none;padding-right:0;text-align:right;"|55 835 135style="border-left:none;padding-left:0;"|/15 519 504~{{bartable|3.5977420}}
style="text-align:right;"|21style="border-right:none;padding-right:0;text-align:right;"|18 858 053style="border-left:none;padding-left:0;"|/5 173 168~{{bartable|3.6453620}}
style="text-align:right;"|22style="border-right:none;padding-right:0;text-align:right;"|19 093 197style="border-left:none;padding-left:0;"|/5 173 168~{{bartable|3.6908120}}
style="text-align:right;"|23style="border-right:none;padding-right:0;text-align:right;"|444 316 699style="border-left:none;padding-left:0;"|/118 982 864~{{bartable|3.7342920}}
style="text-align:right;"|24style="border-right:none;padding-right:0;text-align:right;font-size:96%;"|1 347 822 955style="border-left:none;padding-left:0;font-size:96%;"|/356 948 592~{{bartable|3.7759620}}
style="text-align:right;"|25style="border-right:none;padding-right:0;text-align:right;font-size:87%;"|34 052 522 467style="border-left:none;padding-left:0;font-size:87%;"|/8 923 714 800~{{bartable|3.8159620}}
style="text-align:right;"|26style="border-right:none;padding-right:0;text-align:right;font-size:87%;"|34 395 742 267style="border-left:none;padding-left:0;font-size:87%;"|/8 923 714 800~{{bartable|3.8544220}}
style="text-align:right;"|27style="border-right:none;padding-right:0;text-align:right;font-size:80%;"|312 536 252 003style="border-left:none;padding-left:0;font-size:80%;"|/80 313 433 200~{{bartable|3.8914620}}
style="text-align:right;"|28style="border-right:none;padding-right:0;text-align:right;font-size:80%;"|315 404 588 903style="border-left:none;padding-left:0;font-size:80%;"|/80 313 433 200~{{bartable|3.9271720}}
style="text-align:right;"|29style="border-right:none;padding-right:0;text-align:right;font-size:73%;"|9 227 046 511 387style="border-left:none;padding-left:0;font-size:73%;"|/2 329 089 562 800~{{bartable|3.9616520}}
style="text-align:right;"|30style="border-right:none;padding-right:0;text-align:right;font-size:73%;"|9 304 682 830 147style="border-left:none;padding-left:0;font-size:73%;"|/2 329 089 562 800~{{bartable|3.9949920}}
style="text-align:right;"|31style="border-right:none;padding-right:0;text-align:right;font-size:64%;"|290 774 257 297 357style="border-left:none;padding-left:0;font-size:64%;"|/72 201 776 446 800~{{bartable|4.0272520}}
style="text-align:right;"|32style="border-right:none;padding-right:0;text-align:right;font-size:64%;"|586 061 125 622 639style="border-left:none;padding-left:0;font-size:64%;"|/144 403 552 893 600~{{bartable|4.0585020}}
style="text-align:right;"|33style="border-right:none;padding-right:0;text-align:right;font-size:68%;"|53 676 090 078 349style="border-left:none;padding-left:0;font-size:68%;"|/13 127 595 717 600~{{bartable|4.0888020}}
style="text-align:right;"|34style="border-right:none;padding-right:0;text-align:right;font-size:68%;"|54 062 195 834 749style="border-left:none;padding-left:0;font-size:68%;"|/13 127 595 717 600~{{bartable|4.1182120}}
style="text-align:right;"|35style="border-right:none;padding-right:0;text-align:right;font-size:68%;"|54 437 269 998 109style="border-left:none;padding-left:0;font-size:68%;"|/13 127 595 717 600~{{bartable|4.1467820}}
style="text-align:right;"|36style="border-right:none;padding-right:0;text-align:right;font-size:68%;"|54 801 925 434 709style="border-left:none;padding-left:0;font-size:68%;"|/13 127 595 717 600~{{bartable|4.1745620}}
style="text-align:right;"|37style="border-right:none;padding-right:0;text-align:right;font-size:60%;"|2 040 798 836 801 833style="border-left:none;padding-left:0;font-size:60%;"|/485 721 041 551 200~{{bartable|4.2015920}}
style="text-align:right;"|38style="border-right:none;padding-right:0;text-align:right;font-size:60%;"|2 053 580 969 474 233style="border-left:none;padding-left:0;font-size:60%;"|/485 721 041 551 200~{{bartable|4.2279020}}
style="text-align:right;"|39style="border-right:none;padding-right:0;text-align:right;font-size:60%;"|2 066 035 355 155 033style="border-left:none;padding-left:0;font-size:60%;"|/485 721 041 551 200~{{bartable|4.2535420}}
style="text-align:right;"|40style="border-right:none;padding-right:0;text-align:right;font-size:60%;"|2 078 178 381 193 813style="border-left:none;padding-left:0;font-size:60%;"|/485 721 041 551 200~{{bartable|4.2785420}}

Identities involving harmonic numbers

By definition, the harmonic numbers satisfy the recurrence relation

H_{n + 1} = H_{n} + \frac{1}{n + 1}.

The harmonic numbers are connected to the Stirling numbers of the first kind by the relation

H_n = \frac{1}{n!}\left[{n+1 \atop 2}\right].

The harmonic numbers satisfy the series identities

\sum_{k=1}^n H_k = (n+1) H_{n} - n

and

\sum_{k=1}^n H_k^2 = (n+1)H_{n}^2 - (2 n +1) H_n + 2 n.

These two results are closely analogous to the corresponding integral results

\int_0^x \log y \ d y = x \log x - x

and

\int_0^x (\log y)^2\ d y = x (\log x)^2 - 2 x \log x + 2 x.

=Identities involving {{pi}}=

There are several infinite summations involving harmonic numbers and powers of {{pi}}:{{Cite web |last=Weisstein |first=Eric W. |title=Harmonic Number |url=https://mathworld.wolfram.com/HarmonicNumber.html |access-date=2024-09-30 |website=mathworld.wolfram.com |language=en}}{{better source|date=February 2022}}

\begin{align}

\sum_{n=1}^\infty \frac{H_n}{n\cdot 2^n} &= \frac{\pi^2}{12} \\

\sum_{n=1}^\infty \frac{H_n^2}{n^2} &= \frac{17}{360}\pi^4 \\

\sum_{n=1}^\infty \frac{H_n^2}{(n+1)^2} &= \frac{11}{360}\pi^4 \\

\sum_{n=1}^\infty \frac{H_n}{n^3} &= \frac{\pi^4}{72}

\end{align}

Calculation

An integral representation given by Euler{{citation|title=How Euler Did It|series=MAA Spectrum|first=C. Edward|last=Sandifer|publisher=Mathematical Association of America|year=2007|isbn=9780883855638|page=206|url=https://books.google.com/books?id=sohHs7ExOsYC&pg=PA206}}. is

H_n = \int_0^1 \frac{1 - x^n}{1 - x}\,dx.

The equality above is straightforward by the simple algebraic identity

\frac{1-x^n}{1-x}=1+x+\cdots +x^{n-1}.

Using the substitution {{math|1=x = 1 − u}}, another expression for {{math|Hn}} is

\begin{align}

H_n &= \int_0^1 \frac{1 - x^n}{1 - x}\,dx = \int_0^1\frac{1-(1-u)^n}{u}\,du \\[6pt]

&= \int_0^1\left[\sum_{k=1}^n \binom nk (-u)^{k-1}\right]\,du

= \sum_{k=1}^n \binom nk \int_0^1 (-u)^{k-1}\,du \\[6pt]

&= \sum_{k=1}^n \binom nk \frac{(-1)^{k-1}}{k}.

\end{align}

File:Integral Test.svg. The harmonic number {{math|Hn}} can be interpreted as a Riemann sum of the integral: \int_1^{n+1} \frac{dx}{x} = \ln(n+1).]]

The {{mvar|n}}th harmonic number is about as large as the natural logarithm of {{mvar|n}}. The reason is that the sum is approximated by the integral

\int_1^n \frac{1}{x}\, dx,

whose value is {{math|ln n}}.

The values of the sequence {{math|Hn − ln n}} decrease monotonically towards the limit

\lim_{n \to \infty} \left(H_n - \ln n\right) = \gamma,

where {{math|γ ≈ 0.5772156649}} is the Euler–Mascheroni constant. The corresponding asymptotic expansion is

\begin{align}

H_n &\sim \ln{n}+\gamma+\frac{1}{2n}-\sum_{k=1}^\infty \frac{B_{2k}}{2k n^{2k}}\\

&=\ln{n}+\gamma+\frac{1}{2n}-\frac{1}{12n^2}+\frac{1}{120n^4}-\cdots,

\end{align}

where {{math|Bk}} are the Bernoulli numbers.

{{Reflist|group=note}}

Generating functions

A generating function for the harmonic numbers is

\sum_{n=1}^\infty z^n H_n = \frac {-\ln(1-z)}{1-z},

where ln(z) is the natural logarithm. An exponential generating function is

\sum_{n=1}^\infty \frac {z^n}{n!} H_n = e^z \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k} \frac {z^k}{k!} = e^z \operatorname{Ein}(z)

where Ein(z) is the entire exponential integral. The exponential integral may also be expressed as

\operatorname{Ein}(z) = \mathrm{E}_1(z) + \gamma + \ln z = \Gamma (0,z) + \gamma + \ln z

where Γ(0, z) is the incomplete gamma function.

Arithmetic properties

The harmonic numbers have several interesting arithmetic properties. It is well-known that H_n is an integer if and only if n=1, a result often attributed to Taeisinger.{{Cite book|title=CRC Concise Encyclopedia of Mathematics|last=Weisstein|first=Eric W.|publisher=Chapman & Hall/CRC|year=2003|isbn=978-1-58488-347-0|location=Boca Raton, FL|pages=3115}} Indeed, using 2-adic valuation, it is not difficult to prove that for n \ge 2 the numerator of H_n is an odd number while the denominator of H_n is an even number. More precisely,

H_n=\frac{1}{2^{\lfloor\log_2(n)\rfloor}}\frac{a_n}{b_n}

with some odd integers a_n and b_n.

As a consequence of Wolstenholme's theorem, for any prime number p \ge 5 the numerator of H_{p-1} is divisible by p^2. Furthermore, Eisenstein{{Cite journal|last=Eisenstein|first=Ferdinand Gotthold Max|year=1850|title=Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen ahhängen und durch gewisse lineare Funktional-Gleichungen definirt werden|journal=Berichte Königl. Preuβ. Akad. Wiss. Berlin|volume=15|pages=36–42}} proved that for all odd prime number p it holds

H_{(p-1)/2} \equiv -2q_p(2) \pmod p

where q_p(2) = (2^{p-1} -1)/p is a Fermat quotient, with the consequence that p divides the numerator of H_{(p-1)/2} if and only if p is a Wieferich prime.

In 1991, Eswarathasan and Levine{{Cite journal|last1=Eswarathasan|first1=Arulappah|last2=Levine|first2=Eugene|year=1991|title=p-integral harmonic sums|journal=Discrete Mathematics|volume=91|issue=3|pages=249–257|doi=10.1016/0012-365X(90)90234-9|doi-access=free}} defined J_p as the set of all positive integers n such that the numerator of H_n is divisible by a prime number p. They proved that

\{p-1,p^2-p,p^2-1\}\subseteq J_p

for all prime numbers p \ge 5, and they defined harmonic primes to be the primes p such that J_p has exactly 3 elements.

Eswarathasan and Levine also conjectured that J_p is a finite set for all primes p, and that there are infinitely many harmonic primes. Boyd{{Cite journal|last=Boyd|first=David W.|year=1994|title=A p-adic study of the partial sums of the harmonic series|url=http://projecteuclid.org/euclid.em/1048515811|journal=Experimental Mathematics|volume=3|issue=4|pages=287–302|doi=10.1080/10586458.1994.10504298|citeseerx=10.1.1.56.7026}} verified that J_p is finite for all prime numbers up to p = 547 except 83, 127, and 397; and he gave a heuristic suggesting that the density of the harmonic primes in the set of all primes should be 1/e. Sanna{{Cite journal|last=Sanna|first=Carlo|year=2016|title=On the p-adic valuation of harmonic numbers|journal=Journal of Number Theory|volume=166|pages=41–46|doi=10.1016/j.jnt.2016.02.020|hdl=2318/1622121|url=https://iris.unito.it/bitstream/2318/1622121/1/padicharm.pdf|doi-access=free}} showed that J_p has zero asymptotic density, while Bing-Ling Wu and Yong-Gao Chen{{Cite journal|last1=Chen|first1=Yong-Gao|last2=Wu|first2=Bing-Ling|year=2017|title=On certain properties of harmonic numbers|journal=Journal of Number Theory|volume=175|pages=66–86|doi=10.1016/j.jnt.2016.11.027|doi-access=}} proved that the number of elements of J_p not exceeding x is at most 3x^{\frac{2}{3}+\frac1{25 \log p}}, for all x \geq 1.

Applications

The harmonic numbers appear in several calculation formulas, such as the digamma function

\psi(n) = H_{n-1} - \gamma.

This relation is also frequently used to define the extension of the harmonic numbers to non-integer n. The harmonic numbers are also frequently used to define {{mvar|γ}} using the limit introduced earlier:

\gamma = \lim_{n \rightarrow \infty}{\left(H_n - \ln(n)\right)},

although

\gamma = \lim_{n \to \infty}{\left(H_n - \ln\left(n+\frac{1}{2}\right)\right)}

converges more quickly.

In 2002, Jeffrey Lagarias proved{{cite journal |author=Jeffrey Lagarias |title=An Elementary Problem Equivalent to the Riemann Hypothesis |journal=Amer. Math. Monthly |volume=109 |issue=6 |year=2002 |pages=534–543 |arxiv=math.NT/0008177 |doi=10.2307/2695443|jstor=2695443 }} that the Riemann hypothesis is equivalent to the statement that

\sigma(n) \le H_n + (\log H_n)e^{H_n},

is true for every integer {{math|n ≥ 1}} with strict inequality if {{math|n > 1}}; here {{math|σ(n)}} denotes the sum of the divisors of {{mvar|n}}.

The eigenvalues of the nonlocal problem on L^2([-1,1])

\lambda \varphi(x) = \int_{-1}^{1} \frac{\varphi(x)-\varphi(y)}

x-y
\, dy

are given by \lambda = 2H_n, where by convention H_0 = 0, and the corresponding eigenfunctions are given by the Legendre polynomials \varphi(x) = P_n(x).{{cite journal |author=E.O. Tuck |title=Some methods for flows past blunt slender bodies |journal=J. Fluid Mech. |volume=18 |year=1964 |issue=4 |pages=619–635 |doi=10.1017/S0022112064000453|bibcode=1964JFM....18..619T |s2cid=123120978 }}

Generalizations

=Generalized harmonic numbers=

The nth generalized harmonic number of order m is given by

H_{n,m}=\sum_{k=1}^n \frac{1}{k^m}.

(In some sources, this may also be denoted by H_n^{(m)} or H_m(n).)

The special case m = 0 gives H_{n,0}= n. The special case m = 1 reduces to the usual harmonic number:

H_{n, 1} = H_n = \sum_{k=1}^n \frac{1}{k}.

The limit of H_{n, m} as {{math|n → ∞}} is finite if {{math|m > 1}}, with the generalized harmonic number bounded by and converging to the Riemann zeta function

\lim_{n\rightarrow \infty} H_{n,m} = \zeta(m).

The smallest natural number k such that kn does not divide the denominator of generalized harmonic number H(k, n) nor the denominator of alternating generalized harmonic number H′(k, n) is, for n=1, 2, ... :

:77, 20, 94556602, 42, 444, 20, 104, 42, 76, 20, 77, 110, 3504, 20, 903, 42, 1107, 20, 104, 42, 77, 20, 2948, 110, 136, 20, 76, 42, 903, 20, 77, 42, 268, 20, 7004, 110, 1752, 20, 19203, 42, 77, 20, 104, 42, 76, 20, 370, 110, 1107, 20, ... {{OEIS|id=A128670}}

The related sum \sum_{k=1}^n k^m occurs in the study of Bernoulli numbers; the harmonic numbers also appear in the study of Stirling numbers.

Some integrals of generalized harmonic numbers are

\int_0^a H_{x,2} \, dx = a \frac {\pi^2}{6}-H_{a}

and

\int_0^a H_{x,3} \, dx = a A - \frac {1}{2} H_{a,2}, where A is Apéry's constant ζ(3),

and

\sum_{k=1}^n H_{k,m}=(n+1)H_{n,m}- H_{n,m-1} \text{ for } m \geq 0 .

Every generalized harmonic number of order m can be written as a function of harmonic numbers of order m-1 using

H_{n,m} = \sum_{k=1}^{n-1} \frac {H_{k,m-1}}{k(k+1)} + \frac {H_{n,m-1}}{n}   for example: H_{4,3} = \frac {H_{1,2}}{1 \cdot 2} + \frac {H_{2,2}}{2 \cdot 3} + \frac {H_{3,2}}{3 \cdot 4} + \frac {H_{4,2}}{4}

A generating function for the generalized harmonic numbers is

\sum_{n=1}^\infty z^n H_{n,m} = \frac {\operatorname{Li}_m(z)}{1-z},

where \operatorname{Li}_m(z) is the polylogarithm, and {{math|{{mabs|z}} < 1}}. The generating function given above for {{math|1=m = 1}} is a special case of this formula.

A fractional argument for generalized harmonic numbers can be introduced as follows:

For every p,q>0 integer, and m>1 integer or not, we have from polygamma functions:

H_{q/p,m}=\zeta(m)-p^m\sum_{k=1}^\infty \frac{1}{(q+pk)^m}

where \zeta(m) is the Riemann zeta function. The relevant recurrence relation is

H_{a,m}=H_{a-1,m}+\frac{1}{a^m}.

Some special values are\begin{align}

H_{\frac{1}{4},2} &= 16-\tfrac{5}{6}\pi^2 -8G\\

H_{\frac{1}{2},2} &= 4-\frac{\pi^2}{3} \\

H_{\frac{3}{4},2} &= \frac{16}{9}-\frac{5}{6}\pi^2 + 8G \\

H_{\frac{1}{4},3} &= 64-\pi^3-27\zeta(3) \\

H_{\frac{1}{2},3} & =8-6\zeta(3) \\

H_{\frac{3}{4},3} &= \left(\frac{4}{3}\right)^3+\pi^3 -27\zeta(3)

\end{align}where G is Catalan's constant. In the special case that p = 1, we get

H_{n,m}=\zeta(m, 1) - \zeta(m, n+1),

where \zeta(m, n) is the Hurwitz zeta function. This relationship is used to calculate harmonic numbers numerically.

=Multiplication formulas=

The multiplication theorem applies to harmonic numbers. Using polygamma functions, we obtain

\begin{align}

H_{2x} & =\frac{1}{2}\left(H_x+H_{x-\frac{1}{2}}\right)+\ln 2 \\

H_{3x} &= \frac{1}{3}\left(H_x+H_{x-\frac{1}{3}}+H_{x-\frac{2}{3}}\right)+\ln 3,

\end{align}

or, more generally,

H_{nx}=\frac{1}{n}\left(H_x+H_{x-\frac{1}{n}}+H_{x-\frac{2}{n}}+\cdots +H_{x-\frac{n-1}{n}} \right) + \ln n.

For generalized harmonic numbers, we have

\begin{align}

H_{2x,2} &= \frac{1}{2}\left(\zeta(2)+\frac{1}{2}\left(H_{x,2}+H_{x-\frac{1}{2},2}\right)\right) \\

H_{3x,2} &= \frac{1}{9}\left(6\zeta(2)+H_{x,2}+H_{x-\frac{1}{3},2}+H_{x-\frac{2}{3},2}\right),

\end{align}

where \zeta(n) is the Riemann zeta function.

=Hyperharmonic numbers=

The next generalization was discussed by J. H. Conway and R. K. Guy in their 1995 book The Book of Numbers.{{rp|258}} Let

H_n^{(0)} = \frac1n.

Then the nth hyperharmonic number of order r (r>0) is defined recursively as

H_n^{(r)} = \sum_{k=1}^n H_k^{(r-1)}.

In particular, H_n^{(1)} is the ordinary harmonic number H_n.

= Roman Harmonic numbers =

The Roman Harmonic numbers,{{Cite journal |last=Sesma |first=J. |date=2017 |title=The Roman harmonic numbers revisited |url=http://dx.doi.org/10.1016/j.jnt.2017.05.009 |journal=Journal of Number Theory |volume=180 |pages=544–565 |doi=10.1016/j.jnt.2017.05.009 |issn=0022-314X|arxiv=1702.03718 }} named after Steven Roman, were introduced by Daniel Loeb and Gian-Carlo Rota in the context of a generalization of umbral calculus with logarithms.{{Cite journal |last1=Loeb |first1=Daniel E |last2=Rota |first2=Gian-Carlo |date=1989 |title=Formal power series of logarithmic type |journal=Advances in Mathematics |volume=75 |issue=1 |pages=1–118 |doi=10.1016/0001-8708(89)90079-0 |issn=0001-8708|doi-access=free }} There are many possible definitions, but one of them, for n,k \geq 0, is c_n^{(0)} = 1, and c_n^{(k+1)} = \sum_{i=1}^n\frac{c_i^{(k)}}{i}. Of course, c_n^{(1)} = H_n.

If n \neq 0, they satisfy c_n^{(k+1)} - \frac{c_n^{(k)}}{n} = c_{n-1}^{(k+1)}. Closed form formulas are c_n^{(k)} = n! (-1)^k s(-n,k), where s(-n,k) is Stirling numbers of the first kind generalized to negative first argument, and c_n^{(k)} = \sum_{j=1}^n \binom{n}{j} \frac{(-1)^{j-1}}{j^k}, which was found by Donald Knuth.

In fact, these numbers were defined in a more general manner using Roman numbers and Roman factorials, that include negative values for n. This generalization was useful in their study to define Harmonic logarithms.

Harmonic numbers for real and complex values

{{unreferenced section|date=May 2019}}

The formulae given above,

H_x = \int_0^1 \frac{1-t^x}{1-t} \, dt= \sum_{k=1}^\infty {x \choose k} \frac{(-1)^{k-1}}{k}

are an integral and a series representation for a function that interpolates the harmonic numbers and, via analytic continuation, extends the definition to the complex plane other than the negative integers x. The interpolating function is in fact closely related to the digamma function

H_x = \psi(x+1)+\gamma,

where {{math|ψ(x)}} is the digamma function, and {{math|γ}} is the Euler–Mascheroni constant. The integration process may be repeated to obtain

H_{x,2}= \sum_{k=1}^\infty \frac {(-1)^{k-1}}{k} {x \choose k} H_k.

The Taylor series for the harmonic numbers is

H_x=\sum_{k=2}^\infty (-1)^{k}\zeta (k)\;x^{k-1}\quad\text{ for } |x| < 1

which comes from the Taylor series for the digamma function (\zeta is the Riemann zeta function).

= Alternative, asymptotic formulation =

There is an asymptotic formulation that gives the same result as the analytic continuation of the integral just described. When seeking to approximate {{math|H{{sub|x}}}} for a complex number {{math|x}}, it is effective to first compute {{math|H{{sub|m}}}} for some large integer {{math|m}}. Use that as an approximation for the value of {{math|H{{sub|m+x}}}}. Then use the recursion relation {{math|1=H{{sub|n}} = H{{sub|n−1}} + 1/n}} backwards {{math|m}} times, to unwind it to an approximation for {{math|H{{sub|x}}}}. Furthermore, this approximation is exact in the limit as {{math|m}} goes to infinity.

Specifically, for a fixed integer {{math|n}}, it is the case that

\lim_{m \rightarrow \infty} \left[H_{m+n} - H_m\right] = 0.

If {{math|n}} is not an integer then it is not possible to say whether this equation is true because we have not yet (in this section) defined harmonic numbers for non-integers. However, we do get a unique extension of the harmonic numbers to the non-integers by insisting that this equation continue to hold when the arbitrary integer {{math|n}} is replaced by an arbitrary complex number {{math|x}},

\lim_{m \rightarrow \infty} \left[H_{m+x} - H_m\right] = 0\,.

Swapping the order of the two sides of this equation and then subtracting them from {{math|Hx}} gives

\begin{align}H_x &= \lim_{m \rightarrow \infty} \left[H_m - (H_{m+x}-H_x)\right] \\[6pt]

&= \lim_{m \rightarrow \infty} \left[\left(\sum_{k=1}^m \frac{1}{k}\right) - \left(\sum_{k=1}^m \frac{1}{x+k}\right) \right] \\[6pt]

&= \lim_{m \rightarrow \infty} \sum_{k=1}^m \left(\frac{1}{k} - \frac{1}{x+k}\right) = x \sum_{k=1}^{\infty} \frac{1}{k(x+k)}\, .

\end{align}

This infinite series converges for all complex numbers {{math|x}} except the negative integers, which fail because trying to use the recursion relation {{math|1=H{{sub|n}} = H{{sub|n−1}} + 1/n}} backwards through the value {{math|1=n = 0}} involves a division by zero. By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) {{math|1=H{{sub|0}} = 0}}, (2) {{math|1=H{{sub|x}} = H{{sub|x−1}} + 1/x}} for all complex numbers {{math|x}} except the non-positive integers, and (3) {{math|1=limm→+∞ (Hm+xHm) = 0}} for all complex values {{math|x}}.

This last formula can be used to show that

\int_0^1 H_x \, dx = \gamma,

where {{math|γ}} is the Euler–Mascheroni constant or, more generally, for every {{math|n}} we have:

\int_0^nH_{x}\,dx = n\gamma + \ln(n!) .

=Special values for fractional arguments=

There are the following special analytic values for fractional arguments between 0 and 1, given by the integral

H_\alpha = \int_0^1\frac{1-x^\alpha}{1-x}\,dx\, .

More values may be generated from the recurrence relation

H_\alpha = H_{\alpha-1}+\frac{1}{\alpha}\,,

or from the reflection relation

H_{-\alpha}-H_{\alpha-1} = \pi\cot{(\pi\alpha)}.

For example:

\begin{align}

H_{\frac{1}{2}} &= 2 - 2\ln 2 \\

H_{\frac{1}{3}} &= 3 - \frac{\pi}{2\sqrt{3}} - \frac{3}{2}\ln 3 \\

H_{\frac{2}{3}} &= \frac{3}{2}+\frac{\pi}{2\sqrt{3}} - \frac{3}{2}\ln 3 \\

H_{\frac{1}{4}} &= 4 - \frac{\pi}{2} - 3\ln 2 \\

H_{\frac{1}{5}} &= 5 - \frac{\pi}{2} \sqrt{1+\frac{2}{\sqrt{5}}} - \frac{5}{4} \ln 5 - \frac{\sqrt{5}}{4} \ln\left(\frac{3+\sqrt{5}}{2}\right) \\

H_{\frac{3}{4}} &= \frac{4}{3} + \frac{\pi}{2} - 3\ln 2 \\

H_{\frac{1}{6}} &= 6 - \frac{\sqrt{3}}{2} \pi - 2\ln 2 - \frac{3}{2} \ln 3 \\

H_{\frac{1}{8}} &= 8 - \frac{1+\sqrt{2}}{2} \pi - 4\ln{2} - \frac{1}{\sqrt{2}} \left(\ln\left(2 + \sqrt{2}\right) - \ln\left(2 - \sqrt{2}\right)\right) \\

H_{\frac{1}{12}} &= 12 - \left(1+\frac{\sqrt{3}}{2}\right)\pi - 3\ln{2} - \frac{3}{2} \ln{3} + \sqrt{3} \ln\left(2-\sqrt{3}\right)

\end{align}

Which are computed via Gauss's digamma theorem, which essentially states that for positive integers p and q with p < q

H_{\frac{p}{q}} = \frac{q}{p} +2\sum_{k=1}^{\lfloor\frac{q-1}{2}\rfloor} \cos\left(\frac{2 \pi pk}{q}\right)\ln\left({\sin \left(\frac{\pi k}{q}\right)}\right)-\frac{\pi}{2}\cot\left(\frac{\pi p}{q}\right)-\ln\left(2q\right)

=Relation to the Riemann zeta function=

Some derivatives of fractional harmonic numbers are given by

\begin{align}

\frac{d^n H_x}{dx^n} & = (-1)^{n+1}n!\left[\zeta(n+1)-H_{x,n+1}\right] \\[6pt]

\frac{d^n H_{x,2}}{dx^n} & = (-1)^{n+1}(n+1)!\left[\zeta(n+2)-H_{x,n+2}\right] \\[6pt]

\frac{d^n H_{x,3}}{dx^n} & = (-1)^{n+1}\frac{1}{2}(n+2)!\left[\zeta(n+3)-H_{x,n+3}\right].

\end{align}

And using Maclaurin series, we have for x < 1 that

\begin{align}

H_x & = \sum_{n=1}^\infty (-1)^{n+1}x^n\zeta(n+1) \\[5pt]

H_{x,2} & = \sum_{n=1}^\infty (-1)^{n+1}(n+1)x^n\zeta(n+2) \\[5pt]

H_{x,3} & = \frac{1}{2}\sum_{n=1}^\infty (-1)^{n+1}(n+1)(n+2)x^n\zeta(n+3).

\end{align}

For fractional arguments between 0 and 1 and for a > 1,

\begin{align}

H_{1/a} & = \frac{1}{a}\left(\zeta(2)-\frac{1}{a}\zeta(3)+\frac{1}{a^2}\zeta(4)-\frac{1}{a^3} \zeta(5) + \cdots\right) \\[6pt]

H_{1/a, \, 2} & = \frac{1}{a}\left(2\zeta(3)-\frac{3}{a}\zeta(4)+\frac{4}{a^2}\zeta(5)-\frac{5}{a^3} \zeta(6) + \cdots\right) \\[6pt]

H_{1/a, \, 3} & = \frac{1}{2a}\left(2\cdot3\zeta(4)-\frac{3\cdot4}{a}\zeta(5)+\frac{4\cdot5}{a^2}\zeta(6)-\frac{5\cdot6}{a^3}\zeta(7)+\cdots\right).

\end{align}

See also

Notes

{{Reflist|refs=

{{Cite book

| last1 = John H. | first1 = Conway

| last2 = Richard K. | first2 = Guy

| title = The book of numbers

| year = 1995

| publisher = Copernicus

}}

}}

References

  • {{cite journal |author1=Arthur T. Benjamin |author2=Gregory O. Preston |author3=Jennifer J. Quinn |url=http://www.math.hmc.edu/~benjamin/papers/harmonic.pdf |title=A Stirling Encounter with Harmonic Numbers |year=2002 |journal=Mathematics Magazine |volume=75 |issue=2 |pages=95–103 |doi=10.2307/3219141 |jstor=3219141 |citeseerx=10.1.1.383.722 |access-date=2005-08-08 |archive-url=https://web.archive.org/web/20090617002133/http://www.math.hmc.edu/~benjamin/papers/harmonic.pdf |archive-date=2009-06-17 |url-status=dead }}
  • {{cite book |author=Donald Knuth |author-link=Donald Knuth |title=The Art of Computer Programming |volume=1: Fundamental Algorithms |edition=Third |publisher=Addison-Wesley |year=1997 |isbn=978-0-201-89683-1 |chapter=Section 1.2.7: Harmonic Numbers |pages=75–79}}
  • Ed Sandifer, [http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2002%20Estimating%20the%20Basel%20Problem.pdf How Euler Did It — Estimating the Basel problem] {{Webarchive|url=https://web.archive.org/web/20050513105944/http://www.maa.org/editorial/euler/How%20Euler%20Did%20It%2002%20Estimating%20the%20Basel%20Problem.pdf |date=2005-05-13 }} (2003)
  • {{cite journal

| last1 = Paule | first1 = Peter | author1-link = Peter Paule

| last2 = Schneider | first2 = Carsten

| doi = 10.1016/s0196-8858(03)00016-2

| issue = 2

| journal = Adv. Appl. Math.

| pages = 359–378

| title = Computer Proofs of a New Family of Harmonic Number Identities

| url = http://www.risc.uni-linz.ac.at/publications/download/risc_200/HarmonicNumberIds.pdf

| volume = 31

| year = 2003}}

  • {{cite journal |author=Wenchang Chu |url=http://www.combinatorics.org/Volume_11/PDF/v11i1n15.pdf |title=A Binomial Coefficient Identity Associated with Beukers' Conjecture on Apery Numbers |year=2004 |journal=The Electronic Journal of Combinatorics |volume=11 |pages=N15|doi=10.37236/1856 |doi-access=free }}