List of semiconductor materials#Table of semiconductor alloy systems

{{Short description|none}}

Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way.{{cite book|chapter=Control of Semiconductor Conductivity by Doping|author=Jones, E.D.|title=Electronic Materials |editor=Miller, L. S. |editor2=Mullin, J. B.|publisher=Plenum Press|place=New York|year=1991|pages=155–171|isbn=978-1-4613-6703-1|doi=10.1007/978-1-4615-3818-9_12}}

Because of their application in the computer and photovoltaic industry—in devices such as transistors, lasers, and solar cells—the search for new semiconductor materials and the improvement of existing materials is an important field of study in materials science.

Most commonly used semiconductor materials are crystalline inorganic solids. These materials are classified according to the periodic table groups of their constituent atoms.

Different semiconductor materials differ in their properties. Thus, in comparison with silicon, compound semiconductors have both advantages and disadvantages. For example, gallium arsenide (GaAs) has six times higher electron mobility than silicon, which allows faster operation; wider band gap, which allows operation of power devices at higher temperatures, and gives lower thermal noise to low power devices at room temperature; its direct band gap gives it more favorable optoelectronic properties than the indirect band gap of silicon; it can be alloyed to ternary and quaternary compositions, with adjustable band gap width, allowing light emission at chosen wavelengths, which makes possible matching to the wavelengths most efficiently transmitted through optical fibers. GaAs can be also grown in a semi-insulating form, which is suitable as a lattice-matching insulating substrate for GaAs devices. Conversely, silicon is robust, cheap, and easy to process, whereas GaAs is brittle and expensive, and insulation layers cannot be created by just growing an oxide layer; GaAs is therefore used only where silicon is not sufficient.Milton Ohring [https://books.google.com/books?id=gxSyMjosCwcC&dq=semiconductor+failure+microphotograph&pg=PA310 Reliability and failure of electronic materials and devices] Academic Press, 1998, {{ISBN|0-12-524985-3}}, p. 310.

By alloying multiple compounds, some semiconductor materials are tunable, e.g., in band gap or lattice constant. The result is ternary, quaternary, or even quinary compositions. Ternary compositions allow adjusting the band gap within the range of the involved binary compounds; however, in case of combination of direct and indirect band gap materials there is a ratio where indirect band gap prevails, limiting the range usable for optoelectronics; e.g. AlGaAs LEDs are limited to 660 nm by this. Lattice constants of the compounds also tend to be different, and the lattice mismatch against the substrate, dependent on the mixing ratio, causes defects in amounts dependent on the mismatch magnitude; this influences the ratio of achievable radiative/nonradiative recombinations and determines the luminous efficiency of the device. Quaternary and higher compositions allow adjusting simultaneously the band gap and the lattice constant, allowing increasing radiant efficiency at wider range of wavelengths; for example AlGaInP is used for LEDs. Materials transparent to the generated wavelength of light are advantageous, as this allows more efficient extraction of photons from the bulk of the material. That is, in such transparent materials, light production is not limited to just the surface. Index of refraction is also composition-dependent and influences the extraction efficiency of photons from the material.John Dakin, Robert G. W. Brown [https://books.google.com/books?id=3GmcgL7Z-6YC&dq=gas+discharge+properties+mercury+neon+hydrogen+deuterium&pg=PA57 Handbook of optoelectronics, Volume 1], CRC Press, 2006 {{ISBN|0-7503-0646-7}} p. 57

Types of semiconductor materials

Compound semiconductors

{{more citations needed section|date=September 2021}}

A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth). The range of possible formulae is quite broad because these elements can form binary (two elements, e.g. gallium(III) arsenide (GaAs)), ternary (three elements, e.g. indium gallium arsenide (InGaAs)) and quaternary alloys (four elements) such as aluminium gallium indium phosphide (AlInGaP)) alloy and Indium arsenide antimonide phosphide (InAsSbP). The properties of III-V compound semiconductors are similar to their group IV counterparts. The higher ionicity in these compounds, and especially in the II-VI compound, tends to increase the fundamental bandgap with respect to the less ionic compounds.{{Cite book|title=Fundamentals of Semiconductors|last1=Yu|first1=Peter|publisher=Springer-Verlag Berlin Heidelberg|year=2010|isbn=978-3-642-00709-5|pages=2|last2=Cardona|first2=Manuel|edition=4|doi=10.1007/978-3-642-00710-1|bibcode=2010fuse.book.....Y }}

=Fabrication=

Metalorganic vapor-phase epitaxy (MOVPE) is the most popular deposition technology for the formation of compound semiconducting thin films for devices.{{Citation needed|date=September 2009}} It uses ultrapure metalorganics and/or hydrides as precursor source materials in an ambient gas such as hydrogen.

Other techniques of choice include:

Table of semiconductor materials

class="wikitable sortable"
GroupElem.MaterialFormuladata-sort-type=number |Band gap (eV)Gap typeDescription
IV1SiliconSidata-sort-value="1120"| 1.12indirectUsed in conventional crystalline silicon (c-Si) solar cells, and in its amorphous form as amorphous silicon (a-Si) in thin-film solar cells. Most common semiconductor material in photovoltaics; dominates worldwide PV market; easy to fabricate; good electrical and mechanical properties. Forms high quality thermal oxide for insulation purposes. Most common material used in the fabrication of integrated circuits.
IV1GermaniumGedata-sort-value="670"| 0.67indirectUsed in early radar detection diodes and first transistors, with lesser purity required than silicon. A substrate for high-efficiency multijunction photovoltaic cells. Very similar lattice constant to gallium arsenide. High-purity crystals used for gamma spectroscopy. May grow whiskers, which impair reliability of some devices.
IV1DiamondCdata-sort-value="5470"| 5.47{{cite book|url=https://books.google.com/books?id=rVVW22pnzhoC&pg=PA54|pages=54,327|title=Springer handbook of electronic and photonic materials|author1=Safa O. Kasap |author2=Peter Capper |publisher=Springer|year=2006|isbn=978-0-387-26059-4}}indirectExcellent thermal conductivity. Superior mechanical and optical properties.

High carrier mobilities{{Cite journal |last1=Isberg |first1=Jan |last2=Hammersberg |first2=Johan |last3=Johansson |first3=Erik |last4=Wikström |first4=Tobias |last5=Twitchen |first5=Daniel J. |last6=Whitehead |first6=Andrew J. |last7=Coe |first7=Steven E. |last8=Scarsbrook |first8=Geoffrey A. |date=2002-09-06 |title=High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond |url=https://www.science.org/doi/10.1126/science.1074374 |journal=Science |language=en |volume=297 |issue=5587 |pages=1670–1672 |doi=10.1126/science.1074374 |pmid=12215638 |bibcode=2002Sci...297.1670I |s2cid=27736134 |issn=0036-8075}} and high electric breakdown field{{Cite journal |last=Pierre |first=Volpe |title=High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer |url=https://doi.org/10.1002/pssa.201000055 |journal=Physica Status Solidi|year=2010 |volume=207 |issue=9 |pages=2088–2092 |doi=10.1002/pssa.201000055 |bibcode=2010PSSAR.207.2088V |s2cid=122210971 }} at room temperature as excellent electronics characteristics.

Extremely high nanomechanical resonator quality factor.Y. Tao, J. M. Boss, B. A. Moores, C. L. Degen (2012). [https://arxiv.org/abs/1212.1347 Single-Crystal Diamond Nanomechanical Resonators with Quality Factors exceeding one Million]. arXiv:1212.1347

IV1Gray tin, α-SnSndata-sort-value="40"| 0S.H. Groves, C.R. Pidgeon, A.W. Ewald, R.J. Wagner Journal of Physics and Chemistry of Solids, Volume 31, Issue 9, September 1970, Pages 2031-2049 (1970). [https://doi.org/10.1016/0022-3697(70)90006-5 Interband magnetoreflection of α-Sn].{{cite web|url=http://www.matweb.com/search/datasheet.aspx?matguid=64d7cf04332e428dbca9f755f4624a6c|title=Tin, Sn|website=www.matweb.com}}semimetalLow temperature allotrope (diamond cubic lattice).
IV2Silicon carbide, 3C-SiCSiCdata-sort-value="2300"| 2.3{{cite web|url=http://www.ioffe.ru/SVA/NSM/Semicond/|title=NSM Archive - Physical Properties of Semiconductors|website=www.ioffe.ru|access-date=2010-07-10|archive-url=https://web.archive.org/web/20150928135521/http://www.ioffe.ru/SVA/NSM/Semicond/|archive-date=2015-09-28|url-status=dead}}indirectUsed for early yellow LEDs
IV2Silicon carbide, 4H-SiCSiCdata-sort-value="3300"| 3.3indirectUsed for high-voltage and high-temperature applications
IV2Silicon carbide, 6H-SiCSiCdata-sort-value="3000"| 3.0indirectUsed for early blue LEDs
VI1Sulfur, α-SS8data-sort-value="2600"| 2.6{{Cite journal | last1 = Abass | first1 = A. K. | last2 = Ahmad | first2 = N. H. | doi = 10.1016/0022-3697(86)90123-X | title = Indirect band gap investigation of orthorhombic single crystals of sulfur | journal = Journal of Physics and Chemistry of Solids | volume = 47 | issue = 2 | pages = 143 | year = 1986 |bibcode = 1986JPCS...47..143A }}
VI1Gray (trigonal) seleniumSedata-sort-value="1830"| 1.83–2.0{{cite journal |last1=Nielsen |first1=Rasmus |last2=Youngman |first2=Tomas H. |last3=Moustafa |first3=Hadeel |last4=Levcenco |first4=Sergiu |last5=Hempel |first5=Hannes |last6=Crovetto |first6=Andrea |last7=Olsen |first7=Thomas |last8=Hansen |first8=Ole |last9=Chorkendorff |first9=Ib |last10=Unold |first10=Thomas |last11=Vesborg |first11=Peter C. K. |title=Origin of photovoltaic losses in selenium solar cells with open-circuit voltages approaching 1 V |journal=Journal of Materials Chemistry A |date=2022 |volume=10 |issue=45 |pages=24199–24207 |doi=10.1039/D2TA07729A}}{{cite journal|doi=10.1038/s41467-017-00582-9| last1=Todorov|first1=T.|journal=Nature Communications |title=Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material|date=2017| volume=8| issue=1| page=682| pmid=28947765| pmc=5613033| bibcode=2017NatCo...8..682T| s2cid=256640449}}indirectUsed in selenium rectifiers and solar cells.{{cite journal |last1=Nielsen |first1=Rasmus |last2=Crovetto |first2=Andrea |last3=Assar |first3=Alireza |last4=Hansen |first4=Ole |last5=Chorkendorff |first5=Ib |last6=Vesborg |first6=Peter C.K. |title=Monolithic Selenium/Silicon Tandem Solar Cells |journal=PRX Energy |date=12 March 2024 |volume=3 |issue=1 |page=013013 |doi=10.1103/PRXEnergy.3.013013|arxiv=2307.05996 |bibcode=2024PRXE....3a3013N }} Band gap depends on fabrication conditions.
VI1Red seleniumSedata-sort-value="2050"| 2.05indirect{{cite journal|last1=Rajalakshmi|first1=M.|last2=Arora|first2=Akhilesh|title=Stability of Monoclinic Selenium Nanoparticles|journal=Solid State Physics|date=2001|volume=44|page=109}}
VI1TelluriumTedata-sort-value="330"| 0.33{{Cite book|title=The Electrical Engineering Handbook|last1=Dorf|first1=Richard|publisher=CRC Press|year=1993|pages=2235–2236 | isbn=0-8493-0185-8}}
III-V2Boron nitride, cubicBNdata-sort-value="6360"| 6.36{{cite journal|doi=10.1088/0953-8984/20/7/075233|title=Determination of the optical band-gap energy of cubic and hexagonal boron nitride using luminescence excitation spectroscopy|year=2008|last1=Evans|first1=D. A.|last2=McGlynn|first2=A. G.|last3=Towlson|first3=B. M.|last4=Gunn|first4=M.|last5=Jones|first5=D.|last6=Jenkins|first6=T. E.|last7=Winter|first7=R.|last8=Poolton|first8=N. R. J|journal=Journal of Physics: Condensed Matter|volume=20|page=075233|bibcode = 2008JPCM...20g5233E|issue=7 |url=http://pure.aber.ac.uk/ws/files/77346/Evans-JPhysC-2008.pdf|hdl=2160/612|s2cid=52027854 |hdl-access=free}}indirectPotentially useful for ultraviolet LEDs
III-V2Boron nitride, hexagonalBNdata-sort-value="5960"| 5.96quasi-directPotentially useful for ultraviolet LEDs
III-V2Boron nitride nanotubeBNdata-sort-value="5500"| 5.5{{cite web|url=https://www.matweb.com/search/DataSheet.aspx?MatGUID=6407f9087c0d4f069dc43ba3630b04c8|title=Boron nitride nanotube|website=www.matweb.com}}
III-V2Boron phosphideBPdata-sort-value="2100"| 2.1{{cite book | author = Madelung, O. | title = Semiconductors: Data Handbook | year = 2004 | publisher = Birkhäuser | isbn = 978-3-540-40488-0 | page = 1 | url = https://books.google.com/books?id=v_8sMfNAcA4C&pg=PA1 }}indirect
III-V2Boron arsenideBAsdata-sort-value="1820"| 1.82directUltrahigh thermal conductivity for thermal management; Resistant to radiation damage, possible applications in betavoltaics.
III-V2Boron arsenideB12As2data-sort-value="3470"| 3.47indirectResistant to radiation damage, possible applications in betavoltaics.
III-V2Aluminium nitrideAlNdata-sort-value="6280"| 6.28directPiezoelectric. Not used on its own as a semiconductor; AlN-close GaAlN possibly usable for ultraviolet LEDs. Inefficient emission at 210 nm was achieved on AlN.
III-V2Aluminium phosphideAlPdata-sort-value="2450"| 2.45indirect
III-V2Aluminium arsenideAlAsdata-sort-value="2160"| 2.16indirect
III-V2Aluminium antimonideAlSbdata-sort-value="1600"| 1.6/2.2indirect/direct
III-V2Gallium nitrideGaNdata-sort-value="3440"| 3.44directProblematic to be doped to p-type, p-doping with Mg and annealing allowed first high-efficiency blue LEDs and blue lasers. Very sensitive to ESD. Insensitive to ionizing radiation. GaN transistors can operate at higher voltages and higher temperatures than GaAs, used in microwave power amplifiers. When doped with e.g. manganese, becomes a magnetic semiconductor.
III-V2Gallium phosphideGaPdata-sort-value="2260"| 2.26indirectUsed in early low to medium brightness cheap red/orange/green LEDs. Used standalone or with GaAsP. Transparent for yellow and red light, used as substrate for GaAsP red/yellow LEDs. Doped with S or Te for n-type, with Zn for p-type. Pure GaP emits green, nitrogen-doped GaP emits yellow-green, ZnO-doped GaP emits red.
III-V2Gallium arsenideGaAsdata-sort-value="1420"| 1.42directSecond most common in use after silicon, commonly used as substrate for other III-V semiconductors, e.g. InGaAs and GaInNAs. Brittle. Lower hole mobility than Si, P-type CMOS transistors unfeasible. High impurity density, difficult to fabricate small structures. Used for near-IR LEDs, fast electronics, and high-efficiency solar cells. Very similar lattice constant to germanium, can be grown on germanium substrates.
III-V2Gallium antimonideGaSbdata-sort-value="730"| 0.73directUsed for infrared detectors and LEDs and thermophotovoltaics. Doped n with Te, p with Zn.
III-V2Indium nitrideInNdata-sort-value="700"| 0.7directPossible use in solar cells, but p-type doping difficult. Used frequently as alloys.
III-V2Indium phosphideInPdata-sort-value="1350"| 1.35directCommonly used as substrate for epitaxial InGaAs. Superior electron velocity, used in high-power and high-frequency applications. Used in optoelectronics.
III-V2Indium arsenideInAsdata-sort-value="360"| 0.36directUsed for infrared detectors for 1–3.8 μm, cooled or uncooled. High electron mobility. InAs dots in InGaAs matrix can serve as quantum dots. Quantum dots may be formed from a monolayer of InAs on InP or GaAs. Strong photo-Dember emitter, used as a terahertz radiation source.
III-V2Indium antimonideInSbdata-sort-value="170"| 0.17directUsed in infrared detectors and thermal imaging sensors, high quantum efficiency, low stability, require cooling, used in military long-range thermal imager systems. AlInSb-InSb-AlInSb structure used as quantum well. Very high electron mobility, electron velocity and ballistic length. Transistors can operate below 0.5V and above 200 GHz. Terahertz frequencies maybe achievable.
II-VI2Cadmium selenideCdSedata-sort-value="1740"| 1.74directNanoparticles used as quantum dots. Intrinsic n-type, difficult to dope p-type, but can be p-type doped with nitrogen. Possible use in optoelectronics. Tested for high-efficiency solar cells.
II-VI2Cadmium sulfideCdSdata-sort-value="2420"| 2.42directUsed in photoresistors and solar cells; CdS/Cu2S was the first efficient solar cell. Used in solar cells with CdTe. Common as quantum dots. Crystals can act as solid-state lasers. Electroluminescent. When doped, can act as a phosphor.
II-VI2Cadmium tellurideCdTedata-sort-value="1490"| 1.49directUsed in solar cells with CdS. Used in thin film solar cells and other cadmium telluride photovoltaics; less efficient than crystalline silicon but cheaper. High electro-optic effect, used in electro-optic modulators. Fluorescent at 790 nm. Nanoparticles usable as quantum dots.
II-VI, oxide2Zinc oxideZnOdata-sort-value="3370"| 3.37directPhotocatalytic. Band gap is tunable from 3 to 4 eV by alloying with magnesium oxide and cadmium oxide. Intrinsic n-type, p-type doping is difficult. Heavy aluminium, indium, or gallium doping yields transparent conductive coatings; ZnO:Al is used as window coatings transparent in visible and reflective in infrared region and as conductive films in LCD displays and solar panels as a replacement of indium tin oxide. Resistant to radiation damage. Possible use in LEDs and laser diodes. Possible use in random lasers.
II-VI2Zinc selenideZnSedata-sort-value="2700"| 2.7directUsed for blue lasers and LEDs. Easy to n-type doping, p-type doping is difficult but can be done with e.g. nitrogen. Common optical material in infrared optics.
II-VI2Zinc sulfideZnSdata-sort-value="3725"| 3.54/3.91directBand gap 3.54 eV (cubic), 3.91 (hexagonal). Can be doped both n-type and p-type. Common scintillator/phosphor when suitably doped.
II-VI2Zinc tellurideZnTedata-sort-value="2300"| 2.3directCan be grown on AlSb, GaSb, InAs, and PbSe. Used in solar cells, components of microwave generators, blue LEDs and lasers. Used in electrooptics. Together with lithium niobate used to generate terahertz radiation.
I-VII2Cuprous chlorideCuCldata-sort-value="3400"| 3.4{{cite book|url=https://books.google.com/books?id=QRQU7S2CKCYC&pg=PA127|page=127|title=Semiconductor optics|author=Claus F. Klingshirn|publisher=Springer|year=1997|isbn=978-3-540-61687-0}}direct
I-VI2Copper(I) sulfideCu2Sdata-sort-value="1200"| 1.2indirectp-type, Cu2S/CdS was the first efficient thin film solar cell
IV-VI2Lead selenidePbSedata-sort-value="260"| 0.26directUsed in infrared detectors for thermal imaging. Nanocrystals usable as quantum dots. Good high temperature thermoelectric material.
IV-VI2Lead(II) sulfidePbSdata-sort-value="370"| 0.37{{cite web|url=https://www.matweb.com/search/datasheet.aspx?MatGUID=d2f30ef191544dab92b5167e1afd1195|title=Lead(II) sulfide|website=www.matweb.com}}Mineral galena, first semiconductor in practical use, used in cat's whisker detectors; the detectors are slow due to high dielectric constant of PbS. Oldest material used in infrared detectors. At room temperature can detect SWIR, longer wavelengths require cooling.
IV-VI2Lead telluridePbTedata-sort-value="320"| 0.32Low thermal conductivity, good thermoelectric material at elevated temperature for thermoelectric generators.
IV-VI2Tin(II) sulfideSnSdata-sort-value="1150"| 1.3/1.0{{cite journal|last=Patel|first=Malkeshkumar|author2=Indrajit Mukhopadhyay |author3=Abhijit Ray |title=Annealing influence over structural and optical properties of sprayed SnS thin films|journal=Optical Materials|date=26 May 2013|volume=35|issue=9|pages=1693–1699|doi=10.1016/j.optmat.2013.04.034|bibcode = 2013OptMa..35.1693P }}direct/indirectTin sulfide (SnS) is a semiconductor with direct optical band gap of 1.3 eV and absorption coefficient above 104 cm−1 for photon energies above 1.3 eV. It is a p-type semiconductor whose electrical properties can be tailored by doping and structural modification and has emerged as one of the simple, non-toxic and affordable material for thin film solar cells since a decade.
IV-VI2Tin(IV) sulfideSnS2data-sort-value="2200"| 2.2{{cite journal | doi=10.1039/C5TA08214E | title=Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst | year=2016 | last1=Burton | first1=Lee A. | last2=Whittles | first2=Thomas J. | last3=Hesp | first3=David | last4=Linhart | first4=Wojciech M. | last5=Skelton | first5=Jonathan M. | last6=Hou | first6=Bo | last7=Webster | first7=Richard F. | last8=O'Dowd | first8=Graeme | last9=Reece | first9=Christian | last10=Cherns | first10=David | last11=Fermin | first11=David J. | last12=Veal | first12=Tim D. | last13=Dhanak | first13=Vin R. | last14=Walsh | first14=Aron | journal=Journal of Materials Chemistry A | volume=4 | issue=4 | pages=1312–1318 | hdl=10044/1/41359 | hdl-access=free }}SnS2 is widely used in gas sensing applications.
IV-VI2Tin tellurideSnTedata-sort-value="180"| 0.18directComplex band structure.
V-VI, layered2Bismuth tellurideBi2Te3data-sort-value="130"| 0.13Efficient thermoelectric material near room temperature when alloyed with selenium or antimony. Narrow-gap layered semiconductor. High electrical conductivity, low thermal conductivity. Topological insulator.
II-V2Cadmium phosphideCd3P2data-sort-value="500"| 0.5{{Cite journal|title=Preparation and Semiconducting Properties of Cd3P2|journal=Journal of Applied Physics|last1=Haacke|first1=G.|volume=35|pages=2484–2487|last2=Castellion|first2=G. A.|doi=10.1063/1.1702886|year=1964|issue=8|bibcode=1964JAP....35.2484H}}
II-V2Cadmium arsenideCd3As2data-sort-value="0"| 0N-type intrinsic semiconductor. Very high electron mobility. Used in infrared detectors, photodetectors, dynamic thin-film pressure sensors, and magnetoresistors. Recent measurements suggest that 3D Cd3As2 is actually a zero band-gap Dirac semimetal in which electrons behave relativistically as in graphene.{{cite journal|last1=Borisenko|first1=Sergey|title=Experimental Realization of a Three-Dimensional Dirac Semimetal|journal=Physical Review Letters|volume=113|issue=27603|pages=027603|doi=10.1103/PhysRevLett.113.027603|arxiv = 1309.7978 |bibcode = 2014PhRvL.113b7603B |display-authors=etal|pmid=25062235|year=2014|s2cid=19882802}}
II-V2Zinc phosphideZn3P2data-sort-value="1500"| 1.5{{cite journal|last1=Kimball|first1=Gregory M.|last2=Müller|first2=Astrid M.|last3=Lewis|first3=Nathan S.|last4=Atwater|first4=Harry A.|title=Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2|journal=Applied Physics Letters|volume=95|issue=11|year=2009|pages=112103|issn=0003-6951|doi=10.1063/1.3225151|bibcode = 2009ApPhL..95k2103K |url=https://authors.library.caltech.edu/16318/1/ApplPhysLett_95_112103.pdf}}directUsually p-type.
II-V2Zinc diphosphideZnP2data-sort-value="2100"| 2.1{{Cite journal|title=Energy band structure of Zn3P2, ZnP2 and CdP2 crystals on wavelength modulated photoconductivity and photoresponnse spectra of Schottky diodes investigation|journal=Proceedings of the First International Symposium on the Physics and Chemistry of II-V Compounds|last1=Syrbu|first1=N. N.|pages=237–242|last2=Stamov|first2=I. G.|year=1980|last3=Morozova|first3=V. I.|last4=Kiossev|first4=V. K.|last5=Peev|first5=L. G.}}
II-V2Zinc arsenideZn3As2data-sort-value="1000"| 1.0{{Cite journal|title=Photoluminescence properties of metalorganic vapor phase epitaxial Zn3As2|journal=Journal of Applied Physics|last1=Botha|first1=J. R.|volume=86|pages=5614–5618|last2=Scriven|first2=G. J.|issue=10|doi=10.1063/1.371569|year=1999|last3=Engelbrecht|first3=J. A. A.|last4=Leitch|first4=A. W. R.|bibcode=1999JAP....86.5614B}}The lowest direct and indirect bandgaps are within 30 meV or each other.
II-V2Zinc antimonideZn3Sb2data-sort-value="0"|Used in infrared detectors and thermal imagers, transistors, and magnetoresistors.
Oxide2Titanium dioxide, anataseTiO2data-sort-value="3200"| 3.20{{Cite journal|title=Review of functional titanium oxides. I: TiO2 and its modifications|journal=Progress in Solid State Chemistry|last1=Rahimi|first1=N.|volume=44|pages=86–105|last2=Pax|first2=R. A.|issue=3|doi=10.1016/j.progsolidstchem.2016.07.002|year=2016|last3=MacA. Gray|first3=E.}}indirectPhotocatalytic, n-type
Oxide2Titanium dioxide, rutileTiO2data-sort-value="3000"| 3.0directPhotocatalytic, n-type
Oxide2Titanium dioxide, brookiteTiO2data-sort-value="3260"| 3.26{{cite journal|url=http://www.ias.ac.in/currsci/may252006/1378.pdf|title=Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy|author=S. Banerjee|journal=Current Science|volume=90|issue=10|year=2006|page=1378|display-authors=etal}}
Oxide2Copper(I) oxideCu2Odata-sort-value="2170"| 2.17{{cite book|chapter=Cuprous oxide (Cu2O) band structure, band energies|title=Landolt-Börnstein – Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology|volume=41C: Non-Tetrahedrally Bonded Elements and Binary Compounds I|pages=1–4|editor1=O. Madelung |editor2=U. Rössler |editor3=M. Schulz |doi=10.1007/10681727_62|series=Landolt-Börnstein - Group III Condensed Matter|year=1998|isbn=978-3-540-64583-2}}One of the most studied semiconductors. Many applications and effects first demonstrated with it. Formerly used in rectifier diodes, before silicon.
Oxide2Copper(II) oxideCuOdata-sort-value="1200"| 1.2N-type semiconductor.{{Cite book | last = Lee | first = Thomas H. | title = Planar Microwave Engineering: A practical guide to theory, measurement, and circuits | publisher = Cambridge Univ. Press | year = 2004 | location = UK | pages = 300| url = https://books.google.com/books?id=uoj3IWFxbVYC&pg=PA300 | isbn = 978-0-521-83526-8 }}
Oxide2Uranium dioxideUO2data-sort-value="1300"| 1.3High Seebeck coefficient, resistant to high temperatures, promising thermoelectric and thermophotovoltaic applications. Formerly used in URDOX resistors, conducting at high temperature. Resistant to radiation damage.
Oxide2Tin dioxideSnO2data-sort-value="3700"| 3.7Oxygen-deficient n-type semiconductor. Used in gas sensors.
Oxide3Barium titanateBaTiO3data-sort-value="3000"| 3Ferroelectric, piezoelectric. Used in some uncooled thermal imagers. Used in nonlinear optics.
Oxide3Strontium titanateSrTiO3data-sort-value="3300"| 3.3Ferroelectric, piezoelectric. Used in varistors. Conductive when niobium-doped.
Oxide3Lithium niobateLiNbO3data-sort-value="4000"| 4Ferroelectric, piezoelectric, shows Pockels effect. Wide uses in electrooptics and photonics.
Oxide, V-VI2monoclinic Vanadium(IV) oxideVO2data-sort-value="700"| 0.7{{Cite journal| last1 = Shin| first1 = S.| last2 = Suga| first2 = S.| last3 = Taniguchi| first3 = M.| last4 = Fujisawa| first4 = M.| last5 = Kanzaki| first5 = H.| last6 = Fujimori| first6 = A.| last7 = Daimon| first7 = H.| last8 = Ueda| first8 = Y.| last9 = Kosuge| first9 = K.| title = Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3| journal = Physical Review B| volume = 41| issue = 8| pages = 4993–5009| doi = 10.1103/physrevb.41.4993| pmid = 9994356| year = 1990| bibcode = 1990PhRvB..41.4993S}}opticalStable below 67 °C
Layered2Lead(II) iodidePbI2data-sort-value="2400"| 2.4{{Cite journal| last1 = Sinha| first1 = Sapna| title = Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene| journal = Nature Communications| year = 2020| volume = 11| issue = 1| page = 823| doi = 10.1038/s41467-020-14481-z| pmid = 32041958| pmc = 7010709| bibcode = 2020NatCo..11..823S| s2cid = 256633781}}PbI2 is a layered direct bandgap semiconductor with bandgap of 2.4 eV in its bulk form, whereas its 2D monolayer has an indirect bandgap of ~2.5 eV, with possibilities to tune the bandgap between 1–3 eV
Layered2Molybdenum disulfideMoS2data-sort-value="1230"| 1.23 eV (2H){{Cite journal | doi = 10.1103/PhysRevB.51.17085| pmid = 9978722| title = Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces| journal = Physical Review B| volume = 51| issue = 23| pages = 17085–17095| year = 1995| last1 = Kobayashi | first1 = K. | last2 = Yamauchi | first2 = J. |bibcode = 1995PhRvB..5117085K }}indirect
Layered2Gallium selenideGaSedata-sort-value="2100"| 2.1indirectPhotoconductor. Uses in nonlinear optics. Used as 2D-material. Air sensitive.{{Cite journal|last1=Arora|first1=Himani|last2=Erbe|first2=Artur|date=2021|title=Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe|journal=InfoMat|language=en|volume=3|issue=6|pages=662–693|doi=10.1002/inf2.12160|issn=2567-3165|doi-access=free}}{{Cite journal|last1=Arora|first1=Himani|last2=Jung|first2=Younghun|last3=Venanzi|first3=Tommaso|last4=Watanabe|first4=Kenji|last5=Taniguchi|first5=Takashi|last6=Hübner|first6=René|last7=Schneider|first7=Harald|last8=Helm|first8=Manfred|last9=Hone|first9=James C.|last10=Erbe|first10=Artur|date=2019-11-20|title=Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance Their Electronic and Optical Properties|url=https://doi.org/10.1021/acsami.9b13442|journal=ACS Applied Materials & Interfaces|volume=11|issue=46|pages=43480–43487|doi=10.1021/acsami.9b13442|pmid=31651146 |hdl=11573/1555190 |s2cid=204884014 |issn=1944-8244|hdl-access=free}}{{Cite web|last=Arora|first=Himani|date=2020|title=Charge transport in two-dimensional materials and their electronic applications|url=https://himani-arora-ha.github.io/pdf/Dissertation.pdf|access-date=July 1, 2021|website=Doctoral Dissertation}}
Layered

|2

|Indium selenide

|InSe

|data-sort-value="1805"|1.26–2.35 eV

|direct (indirect in 2D)

|Air sensitive. High electrical mobility in few- and mono-layer form.

Layered2Tin sulfideSnSdata-sort-value="1500"| >1.5 eVdirect
Layered2Bismuth sulfideBi2S3data-sort-value="1300"| 1.3
Magnetic, diluted (DMS)B. G. Yacobi [https://books.google.com/books?id=6FAbQCiaNPEC&dq=%22MAGNETIC+SEMICONDUCTORS%22&pg=PA153 Semiconductor materials: an introduction to basic principles] Springer, 2003, {{ISBN|0-306-47361-5}}3Gallium manganese arsenideGaMnAsdata-sort-value="0"|
Magnetic, diluted (DMS)3Lead manganese telluridePbMnTedata-sort-value="0"|
Magnetic4Lanthanum calcium manganateLa0.7Ca0.3MnO3data-sort-value="0"|Colossal magnetoresistance
Magnetic2Iron(II) oxideFeOdata-sort-value="2200"| 2.2{{cite journal|title=Synthesis of ultra small iron oxide and doped iron oxide nanostructures and their antimicrobial activities|year=2019 |doi=10.1080/16583655.2019.1565437 |last1=Kumar |first1=Manish |last2=Sharma |first2=Anjna |last3=Maurya |first3=Indresh Kumar |last4=Thakur |first4=Alpana |last5=Kumar |first5=Sunil |journal=Journal of Taibah University for Science |volume=13 |issue=1 |pages=280–285 |s2cid=139826266 |doi-access=free |bibcode=2019JTUS...13..280K }}Antiferromagnetic. Band gap for iron oxide nanoparticles was found to be 2.2 eV and on doping the band gap found to be increased up to 2.5 eV
Magnetic2Nickel(II) oxideNiOdata-sort-value="3800"|3.6–4.0directSynthesis and Characterization of Nano-Dimensional

Nickelous Oxide (NiO) Semiconductor

S. Chakrabarty and K. ChatterjeeSynthesis and Room Temperature Magnetic Behavior

of Nickel Oxide Nanocrystallites

Kwanruthai Wongsaprom*[a] and Santi Maensiri [b]

Antiferromagnetic
Magnetic2Europium(II) oxideEuOdata-sort-value="0"|Ferromagnetic
Magnetic2Europium(II) sulfideEuSdata-sort-value="0"|Ferromagnetic
Magnetic2Chromium(III) bromideCrBr3data-sort-value="0"|
other3Copper indium selenide, CISCuInSe2data-sort-value="1000"| 1direct
other3Silver gallium sulfideAgGaS2data-sort-value="0"|Nonlinear optical properties
other3Zinc silicon phosphideZnSiP2data-sort-value="2000"|2.0
other2Arsenic trisulfide OrpimentAs2S3data-sort-value="2700"| 2.7[https://mos2crystals.com/product/arsenic-sulfide-as2s3/ Arsenic sulfide (As2S3)]directSemiconductive in both crystalline and glassy state
other2Arsenic sulfide RealgarAs4S4data-sort-value="0"|Semiconductive in both crystalline and glassy state
other2Platinum silicidePtSidata-sort-value="0"|Used in infrared detectors for 1–5 μm. Used in infrared astronomy. High stability, low drift, used for measurements. Low quantum efficiency.
other2Bismuth(III) iodideBiI3data-sort-value="0"|
other2Mercury(II) iodideHgI2data-sort-value="0"|Used in some gamma-ray and x-ray detectors and imaging systems operating at room temperature.
other2Thallium(I) bromideTlBrdata-sort-value="2680"| 2.68[https://ieeexplore.ieee.org/document/4291773 Temperature Dependence of Spectroscopic Performance of Thallium Bromide X- and Gamma-Ray Detectors]Used in some gamma-ray and x-ray detectors and imaging systems operating at room temperature. Used as a real-time x-ray image sensor.
other2Silver sulfideAg2Sdata-sort-value="900"| 0.9{{cite book|author1=Hodes|author2=Ebooks Corporation|title=Chemical Solution Deposition of Semiconductor Films|url=https://books.google.com/books?id=RLeR6v2Nq84C&pg=PA319|access-date=28 June 2011|date=8 October 2002|publisher=CRC Press|isbn=978-0-8247-4345-1|pages=319–}}
other3Carbon nitrideC3N4data-sort-value="0"|

| other

2Iron disulfideFeS2data-sort-value="950"| 0.95{{cite journal|author1=Arumona Edward Arumona|title= Density Functional Theory Calculation of Band Gap of Iron (II) disulfide and Tellurium|author2= Amah A. N.|journal= Advanced Journal of Graduate Research|volume= 3|pages= 41–46|year= 2018|doi= 10.21467/ajgr.3.1.41-46|doi-access= free}}Mineral pyrite. Used in later cat's whisker detectors, investigated for solar cells.
other4Copper zinc tin sulfide, CZTSCu2ZnSnS4data-sort-value="1490"| 1.49directCu2ZnSnS4 is derived from CIGS, replacing the Indium/Gallium with earth abundant Zinc/Tin.
other4Copper zinc antimony sulfide, CZASCu1.18Zn0.40Sb1.90S7.2data-sort-value="2200"| 2.2{{cite journal|author1=Prashant K Sarswat|title= Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode|author2= Michael L Free|journal= International Journal of Photoenergy|volume= 2013|pages= 1–7|doi= 10.1155/2013/154694|year= 2013|doi-access= free}}directCopper zinc antimony sulfide is derived from copper antimony sulfide (CAS), a famatinite class of compound.
other3Copper tin sulfide, CTSCu2SnS3data-sort-value="910"| 0.91directCu2SnS3 is p-type semiconductor and it can be used in thin film solar cell application.

Table of semiconductor alloy systems

The following semiconducting systems can be tuned to some extent, and represent not a single material but a class of materials.

class="wikitable sortable"
rowspan=2 | Group

! rowspan=2 | Elem.

! rowspan=2 | Material class

! rowspan=2 | Formula

! colspan=2 | Band gap (eV)

! rowspan=2 | Gap type

! rowspan=2 | Description

LowerUpper
IV-VI3Lead tin telluridePb1−xSnxTedata-sort-value="0"| 0data-sort-value="290"| 0.29Used in infrared detectors and for thermal imaging
IV2Silicon-germaniumSi1−xGexdata-sort-value="670"| 0.67data-sort-value="1110"| 1.11direct/indirectAdjustable band gap, allows construction of heterojunction structures. Certain thicknesses of superlattices have direct band gap.Yasantha Rajakarunanayake(1991) [https://thesis.library.caltech.edu/2857/ Optical properties of Si-Ge superlattices and wide band gap II-VI superlattices] Dissertation (Ph.D.), California Institute of Technology
IV2Silicon-tinSi1−xSnxdata-sort-value="1000"| 1.0data-sort-value="1110"| 1.11indirectAdjustable band gap.{{cite journal|last1=Hussain|first1=Aftab M.|last2=Fahad|first2=Hossain M.|last3=Singh|first3=Nirpendra|last4=Sevilla|first4=Galo A. Torres|last5=Schwingenschlögl|first5=Udo|last6=Hussain|first6=Muhammad M.|title=Tin – an unlikely ally for silicon field effect transistors?|journal=Physica Status Solidi RRL|volume=8|issue=4|pages=332–335|doi=10.1002/pssr.201308300|bibcode = 2014PSSRR...8..332H |year=2014|s2cid=93729786 |url=https://zenodo.org/record/3447519}}
III-V3Aluminium gallium arsenideAlxGa1−xAsdata-sort-value="1420"| 1.42data-sort-value="2160"| 2.16direct/indirectDirect band gap for x<0.4 (corresponding to 1.42–1.95 eV); can be lattice-matched to GaAs substrate over entire composition range; tends to oxidize; n-doping with Si, Se, Te; p-doping with Zn, C, Be, Mg. Can be used for infrared laser diodes. Used as a barrier layer in GaAs devices to confine electrons to GaAs (see e.g. QWIP). AlGaAs with composition close to AlAs is almost transparent to sunlight. Used in GaAs/AlGaAs solar cells.
III-V3Indium gallium arsenideInxGa1−xAsdata-sort-value="360"| 0.36data-sort-value="1430"| 1.43directWell-developed material. Can be lattice matched to InP substrates. Use in infrared technology and thermophotovoltaics. Indium content determines charge carrier density. For x=0.015, InGaAs perfectly lattice-matches germanium; can be used in multijunction photovoltaic cells. Used in infrared sensors, avalanche photodiodes, laser diodes, optical fiber communication detectors, and short-wavelength infrared cameras.
III-V3Indium gallium phosphideInxGa1−xPdata-sort-value="1350"| 1.35data-sort-value="2260"| 2.26direct/indirectUsed for HEMT and HBT structures and high-efficiency multijunction solar cells for e.g. satellites. Ga0.5In0.5P is almost lattice-matched to GaAs, with AlGaIn used for quantum wells for red lasers.
III-V3Aluminium indium arsenideAlxIn1−xAsdata-sort-value="360"| 0.36data-sort-value="2160"| 2.16direct/indirectBuffer layer in metamorphic HEMT transistors, adjusting lattice constant between GaAs substrate and GaInAs channel. Can form layered heterostructures acting as quantum wells, in e.g. quantum cascade lasers.
III-V3Aluminium gallium antimonideAlxGa1−xSbdata-sort-value="700"| 0.7data-sort-value="1610"| 1.61direct/indirectUsed in HBTs, HEMTs, resonant-tunneling diodes and some niche optoelectronics. Also used as a buffer layer for InAs quantum wells.
III-V3Aluminium indium antimonideAlxIn1−xSbdata-sort-value="170"| 0.17data-sort-value="1610"| 1.61direct/indirectUsed as a buffer layer in InSb-based quantum wells and other devices grown on GaAs and GaSb substrates. Also used as the active layer in some mid-infrared LEDs and photodiodes.
III-V3Gallium arsenide nitrideGaAsNdata-sort-value="0"|data-sort-value="0"|
III-V3Gallium arsenide phosphideGaAsPdata-sort-value="1430"| 1.43data-sort-value="2260"| 2.26direct/indirectUsed in red, orange and yellow LEDs. Often grown on GaP. Can be doped with nitrogen.
III-V3Aluminium arsenide antimonideAlAsSbdata-sort-value="1610"| 1.61data-sort-value="2160"| 2.16indirectUsed as a barrier layer in infrared photodetectors. Can be lattice matched to GaSb, InAs and InP.
III-V3Gallium arsenide antimonideGaAsSbdata-sort-value="700"| 0.7data-sort-value="1420"| 1.42directUsed in HBTs and in tunnel junctions in multi-junction solar cells. GaAs0.51Sb0.49 is lattice matched to InP.
III-V3Aluminium gallium nitrideAlGaNdata-sort-value="3440"| 3.44data-sort-value="6280"| 6.28directUsed in blue laser diodes, ultraviolet LEDs (down to 250 nm), and AlGaN/GaN HEMTs. Can be grown on sapphire. Used in heterojunctions with AlN and GaN.
III-V3Aluminium gallium phosphideAlGaPdata-sort-value="2260"| 2.26data-sort-value="2450"| 2.45indirectUsed in some green LEDs.
III-V3Indium gallium nitrideInGaNdata-sort-value="2000"| 2data-sort-value="3400"| 3.4directInxGa1–xN, x usually between 0.02 and 0.3 (0.02 for near-UV, 0.1 for 390 nm, 0.2 for 420 nm, 0.3 for 440 nm). Can be grown epitaxially on sapphire, SiC wafers or silicon. Used in modern blue and green LEDs, InGaN quantum wells are effective emitters from green to ultraviolet. Insensitive to radiation damage, possible use in satellite solar cells. Insensitive to defects, tolerant to lattice mismatch damage. High heat capacity.
III-V3Indium arsenide antimonideInAsSbdata-sort-value="170"| 0.17data-sort-value="360"| 0.36directPrimarily used in mid- and long-wave infrared photodetectors due to its small bandgap, which reaches a minimum of around 0.08 eV in InAs0.4Sb0.6 at room temperature.
III-V3Indium gallium antimonideInGaSbdata-sort-value="170"| 0.17data-sort-value="700"| 0.7directUsed in some transistors and infrared photodetectors.
III-V4Aluminium gallium indium phosphideAlGaInPdata-sort-value="0"|data-sort-value="0"|direct/indirectAlso InAlGaP, InGaAlP, AlInGaP; for lattice matching to GaAs substrates the In mole fraction is fixed at about 0.48, the Al/Ga ratio is adjusted to achieve band gaps between about 1.9 and 2.35 eV; direct or indirect band gaps depending on the Al/Ga/In ratios; used for wavelengths between 560 and 650 nm; tends to form ordered phases during deposition, which has to be prevented
III-V4Aluminium gallium arsenide phosphideAlGaAsPdata-sort-value="0"|data-sort-value="0"|
III-V4Indium gallium arsenide phosphideInGaAsPdata-sort-value="0"|data-sort-value="0"|
III-V4Indium gallium arsenide antimonideInGaAsSbdata-sort-value="0"|data-sort-value="0"|Use in thermophotovoltaics.
III-V4Indium arsenide antimonide phosphideInAsSbPdata-sort-value="0"|data-sort-value="0"|Use in thermophotovoltaics.
III-V4Aluminium indium arsenide phosphideAlInAsPdata-sort-value="0"|data-sort-value="0"|
III-V4Aluminium gallium arsenide nitrideAlGaAsNdata-sort-value="0"|data-sort-value="0"|
III-V4Indium gallium arsenide nitrideInGaAsNdata-sort-value="0"|data-sort-value="0"|
III-V4Indium aluminium arsenide nitrideInAlAsNdata-sort-value="0"|data-sort-value="0"|
III-V4Gallium arsenide antimonide nitrideGaAsSbNdata-sort-value="0"|data-sort-value="0"|
III-V5Gallium indium nitride arsenide antimonideGaInNAsSbdata-sort-value="0"|data-sort-value="0"|
III-V5Gallium indium arsenide antimonide phosphideGaInAsSbPdata-sort-value="0"|data-sort-value="0"|Can be grown on InAs, GaSb, and other substrates. Can be lattice matched by varying composition. Possibly usable for mid-infrared LEDs.
II-VI3Cadmium zinc telluride, CZTCdZnTedata-sort-value="1400"| 1.4data-sort-value="2200"| 2.2directEfficient solid-state x-ray and gamma-ray detector, can operate at room temperature. High electro-optic coefficient. Used in solar cells. Can be used to generate and detect terahertz radiation. Can be used as a substrate for epitaxial growth of HgCdTe.
II-VI3Mercury cadmium tellurideHgCdTedata-sort-value="0"| 0data-sort-value="1500"| 1.5Known as "MerCad". Extensive use in sensitive cooled infrared imaging sensors, infrared astronomy, and infrared detectors. Alloy of mercury telluride (a semimetal, zero band gap) and CdTe. High electron mobility. The only common material capable of operating in both 3–5 μm and 12–15 μm atmospheric windows. Can be grown on CdZnTe.
II-VI3Mercury zinc tellurideHgZnTedata-sort-value="0"| 0data-sort-value="2250"| 2.25Used in infrared detectors, infrared imaging sensors, and infrared astronomy. Better mechanical and thermal properties than HgCdTe but more difficult to control the composition. More difficult to form complex heterostructures.
II-VI3Mercury zinc selenideHgZnSedata-sort-value="0"|data-sort-value="0"|
II-V4Zinc cadmium phosphide arsenide(Zn1−xCdx)3(P1−yAsy)2{{Cite journal|title=Compounds and solid solutions of the Zn-Cd-P-As system in semiconductor electronics|journal=Inorganic Materials|last1=Trukhan|first1=V. M.|volume=50|pages=868–873|last2=Izotov|first2=A. D.|issue=9|doi=10.1134/S0020168514090143|year=2014|last3=Shoukavaya|first3=T. V.|s2cid=94409384 }}data-sort-value="0"| 0data-sort-value="1500"| 1.5{{Cite journal|title=Level Ordering in II3-V2 Semiconducting Compounds|journal=Physica Status Solidi B|last=Cisowski|first=J.|volume=111|pages=289–293|year=1982|issue=1|doi=10.1002/pssb.2221110132|bibcode=1982PSSBR.111..289C}}Various applications in optoelectronics (incl. photovoltaics), electronics and thermoelectrics.{{Cite journal|title=II3V2 compounds and alloys|journal=Progress in Crystal Growth and Characterization of Materials|last=Arushanov|first=E. K.|volume=25|pages=131–201|issue=3|doi=10.1016/0960-8974(92)90030-T|year=1992}}
other4Copper indium gallium selenide, CIGSCu(In,Ga)Se2data-sort-value="1000"| 1data-sort-value="1700"| 1.7directCuInxGa1–xSe2. Polycrystalline. Used in thin film solar cells.

See also

References

{{reflist|30em}}

{{Photovoltaics}}

{{Semiconductor laser}}

{{DEFAULTSORT:Semiconductor Materials}}