List of tallest mountains in the Solar System

{{Short description|none}}

{{use dmy dates|date=July 2015}}

File:Olympus Mons Side View.svg, the tallest planetary mountain in the Solar System, compared to Mount Everest and Mauna Kea on Earth (heights shown are above datum or sea level, which differ from the base-to-peak heights given in the list).]]

This is a list of the tallest mountains in the Solar System. This list includes peaks on all celestial bodies where significant mountains have been detected. For some celestial bodies, different peaks are given across different types of measurement. The solar system's tallest mountain is possibly the Olympus Mons on Mars with an altitude of 21.9 to 26 km. The central peak of Rheasilvia on the asteroid Vesta is also a candidate to be the tallest, with an estimated at up to between 19 and 22 km from peak to base.

__TOC__

{{clear}}

List

Heights are given from base to peak (although a precise definition for mean base level is lacking). Peak elevations above sea level are only available on Earth, and possibly Titan.{{cite journal|last1= Hayes|first1= A.G.|last2= Birch|first2= S.P.D.|last3= Dietrich|first3= W.E.|last4= Howard|first4= A.D.|last5= Kirk|first5= R.L.|last6= Poggiali|first6= V.|last7= Mastrogiuseppe|first7= M.|last8= Michaelides|first8= R.J.|last9= Corlies|first9= P.M.|last10= Moore|first10= J.M.|last11= Malaska|first11= M.J.|last12= Mitchell|first12= K.L.|last13= Lorenz|first13= R.D.|last14= Wood|first14= C.A.|title= Topographic Constraints on the Evolution and Connectivity of Titan's Lacustrine Basins |journal= Geophysical Research Letters|volume= 44|issue= 23|year= 2017|pages= 11,745–11,753|doi= 10.1002/2017GL075468|bibcode= 2017GeoRL..4411745H|doi-access= free|hdl= 11573/1560393|hdl-access= free}} On other planets, peak elevations above an equipotential surface or a reference ellipsoid could be used if enough data is available for the calculation, but this is often not the case.

class="wikitable sortable"
width="30" |Planet

! class=unsortable|Tallest peak(s)

! width="189" |Base-to-peak height

! width="20" |% of radius{{refn |100 × ratio of peak height to radius of the parent world| group = n }}

! width="84" |Origin

!class=unsortable|Notes

{{sort|01|Mercury}}

| Caloris Montes

| {{sort|030|≤ {{convert|abbr=on|3|km|mi|1}}{{cite web

| title = Surface

| work = MESSENGER web site

| publisher = Johns Hopkins University/Applied Physics Lab

| url = http://messenger-education.org/elusive_planet/surface.htm

| access-date = 4 April 2012

| archive-url = https://web.archive.org/web/20160930094920/http://www.messenger-education.org/elusive_planet/surface.htm

| archive-date = 30 September 2016

| url-status = usurped

}}{{cite journal|last1=Oberst|first1=J.|last2=Preusker|first2=F.|last3=Phillips|first3=R. J.|last4=Watters|first4=T. R.|last5=Head|first5=J. W.|last6=Zuber|first6=M. T.|last7=Solomon|first7=S. C.|title=The morphology of Mercury's Caloris basin as seen in MESSENGER stereo topographic models|journal=Icarus |volume=209|issue=1 |date=2010|pages=230–238 |issn=0019-1035|doi=10.1016/j.icarus.2010.03.009|bibcode = 2010Icar..209..230O }}}}

| {{sort|0123|0.12}}

| impact{{cite journal|last1=Fassett|first1=C. I.|last2=Head|first2=J. W.|last3=Blewett|first3=D. T.|last4=Chapman|first4=C. R.|last5=Dickson|first5=J. L.|last6=Murchie|first6=S. L.|last7=Solomon|first7=S. C.|last8=Watters|first8=T. R.|title=Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits|journal=Earth and Planetary Science Letters|volume=285 |issue=3–4|date=2009 |pages=297–308|issn=0012-821X |doi=10.1016/j.epsl.2009.05.022|bibcode = 2009E&PSL.285..297F }}

| Formed by the Caloris impact

rowspan="2" | {{sort|02|Venus}}

| Skadi Mons (Maxwell Montes massif)

|{{sort|064|{{convert|abbr=on|6.4|km|mi|1}}{{cite book| title = Planetology : Unlocking the secrets of the solar system| author1 = Jones, Tom| author2 = Stofan, Ellen| date = 2008| publisher = National Geographic Society| location = Washington, D.C.| page = 74| isbn = 978-1-4262-0121-9| url = https://books.google.com/books?id=SL-BszT15s0C&pg=PA74| access-date = 25 October 2016| archive-date = 16 July 2017| archive-url = https://web.archive.org/web/20170716230502/https://books.google.com/books?id=SL-BszT15s0C&pg=PA74| url-status = live}} (11 km above mean)}}

| {{sort|0106|0.11}}

| tectonic{{cite journal|last1=Keep|first1=M.| last2=Hansen|first2=V. L.|title=Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation|journal=Journal of Geophysical Research| volume=99|issue=E12| date=1994|pages=26015| issn=0148-0227| doi=10.1029/94JE02636|bibcode = 1994JGR....9926015K }}

| Has radar-bright slopes due to metallic Venus snow, possibly lead sulfide{{cite news

|title= 'Heavy metal' snow on Venus is lead sulfide

|last= Otten

|first= Carolyn Jones

|url= http://news.wustl.edu/news/Pages/633.aspx

|publisher= Washington University in St. Louis

|newspaper= Newsroom

|date= 10 February 2004

|access-date= 10 December 2012

|archive-date= 29 January 2016

|archive-url= https://web.archive.org/web/20160129141525/http://news.wustl.edu/news/Pages/633.aspx

|url-status= live

}}

Maat Mons

| {{sort|049|{{convert|abbr=on|4.9|km|mi|1}} (approx.){{cite web

| title = PIA00106: Venus - 3D Perspective View of Maat Mons

| work = Planetary Photojournal

| publisher = Jet Propulsion Lab

| date = 1996-08-01

| url = http://photojournal.jpl.nasa.gov/catalog/PIA00106

| access-date = 30 June 2012

| archive-date = 8 March 2016

| archive-url = https://web.archive.org/web/20160308025904/http://photojournal.jpl.nasa.gov/catalog/pia00106

| url-status = live

}}}}

| {{sort|0081|0.081}}

| volcanic{{cite journal |last=Robinson |first=C. A. |author2=Thornhill, G. D. |author3=Parfitt, E. A. |date=January 1995 |title=Large-scale volcanic activity at Maat Mons: Can this explain fluctuations in atmospheric chemistry observed by Pioneer Venus? |journal=Journal of Geophysical Research |volume=100 |issue=E6 |pages=11755–11764 |url=http://www.agu.org/pubs/crossref/1995/95JE00147.shtml |access-date=11 February 2013 |doi=10.1029/95JE00147 |bibcode=1995JGR...10011755R |archive-date=1 March 2012 |archive-url=https://web.archive.org/web/20120301205231/http://www.agu.org/pubs/crossref/1995/95JE00147.shtml |url-status=live }}

| Highest volcano on Venus

rowspan="5" | {{hs|03}} Earth{{refn |On Earth, mountain heights are constrained by glaciation; peaks are usually limited to elevations not more than 1500 m above the snow line (which varies with latitude). Exceptions to this trend tend to be rapidly forming volcanoes.{{cite journal|last1= Egholm|first1=D. L.|last2= Nielsen|first2=S. B.|last3= Pedersen|first3=V. K.|last4= Lesemann|first4=J.-E.|title= Glacial effects limiting mountain height|journal= Nature|volume= 460|issue= 7257|year= 2009|pages= 884–887|doi= 10.1038/nature08263|pmid= 19675651|bibcode= 2009Natur.460..884E|s2cid=205217746}}| group = n }}

| Mauna Kea and Mauna Loa

| {{sort|102|{{convert|abbr=on|10.2|km|mi|1}}{{cite web |url=http://science.nationalgeographic.com/science/earth/surface-of-the-earth/mountains-article/ |title=Mountains: Highest Points on Earth |publisher=National Geographic Society |access-date=19 September 2010 |archive-date=6 March 2012 |archive-url=https://web.archive.org/web/20120306205530/http://science.nationalgeographic.com/science/earth/surface-of-the-earth/mountains-article |url-status=dead }}}}

| {{sort|0160|0.16}}

| volcanic

| {{convert|abbr=on|4.2|km|mi|1}} of this is above sea level

Haleakalā

| {{sort|091|{{convert|abbr=on|9.1|km|mi|1}}{{cite web

| title = Haleakala National Park Geology Fieldnotes

| publisher = U.S. National Park Service

| url = https://www.nps.gov/hale/learn/nature/geology.htm

| access-date = 31 January 2017

| archive-date = 2 February 2017

| archive-url = https://web.archive.org/web/20170202092829/https://www.nature.nps.gov/geology/parks/hale/index.cfm

| url-status = live

}}}}

| {{sort|0142|0.14}}

| volcanic

| Rises 3.1 km above sea level

Pico del Teide

| {{sort|075|{{convert|abbr=on|7.5|km|mi|1}}{{cite web | title = Teide National Park | work = UNESCO World Heritage Site list | publisher = UNESCO | url = https://whc.unesco.org/en/list/1258 | access-date = 2 June 2013 | archive-date = 12 June 2022 | archive-url = https://web.archive.org/web/20220612093927/https://whc.unesco.org/en/list/1258 | url-status = live }}}}

| {{sort|0118|0.12}}

| volcanic

| Rises 3.7 km above sea level

Denali (Mount McKinley)

| {{sort|056|{{convert|abbr=on|5.3|to|5.9|km|mi|1}}{{cite web|url=https://www.pbs.org/wgbh/nova/denali/expedition/mission.html|title=NOVA Online: Surviving Denali, The Mission|publisher=Public Broadcasting Corporation|work=NOVA web site|date=2000|access-date=7 June 2007|archive-date=20 November 2010|archive-url=https://web.archive.org/web/20101120103239/http://www.pbs.org/wgbh/nova/denali/expedition/mission.html|url-status=live}}}}

| {{sort|0093|0.093}}

| tectonic

| Tallest mountain base-to-peak on land{{cite book|author=Adam Helman|title=The Finest Peaks: Prominence and Other Mountain Measures|url=https://books.google.com/books?id=kr8AM-w8IFQC|access-date=9 December 2012|date=2005|publisher=Trafford Publishing|isbn=978-1-4120-5995-4|archive-date=31 October 2020|archive-url=https://web.archive.org/web/20201031053845/https://books.google.com/books?id=kr8AM-w8IFQC|url-status=live}}{{refn |On p. 20 of Helman (2005): "the base to peak rise of Mount McKinley is the largest of any mountain that lies entirely above sea level, some {{convert|18000|feet|meter|abbr=on}}"| group = n }}

Mount Everest

| {{sort|041|{{convert|abbr=on|3.6|to|4.6|km|mi|1}}Mount Everest (1:50,000 scale map), prepared under the direction of Bradford Washburn for the Boston Museum of Science, the Swiss Foundation for Alpine Research, and the National Geographic Society, 1991, {{ISBN|3-85515-105-9}}}}

| {{sort|0072|0.072}}

| tectonic

| 4.6 km on north face, 3.6 km on south face;{{refn |Peak is {{convert|abbr=on|8.8|km|mi|1}} above sea level, and over {{convert|abbr=on|13|km|mi|1}} above the oceanic abyssal plain.| group = n }} highest elevation (8.8 km) above sea level, as well as by wet and dry prominence (but not among the tallest from base to peak, and in distance to Earth's center Mt Chimborazo rises highest).

rowspan="5" | {{sort|04|Moon}}{{refn |Prominences in crater rims are not typically viewed as peaks{{cn|date=March 2025}} and have not been listed here. The highest point on the Moon is the so-called Selenean summit at {{coord|5.441|N|158.656|W|globe:moon_type:landmark|display=inline}}, a crater rim on the lunar highland, having an elevation of {{convert|10.629|km}}.{{cite journal | last=Li | first=ChunLai | last2=Ren | first2=Xin | last3=Liu | first3=JianJun | last4=Zou | first4=XiaoDuan | last5=Mu | first5=LingLi | last6=Wang | first6=JianYu | last7=Shu | first7=Rong | last8=Zou | first8=YongLiao | last9=Zhang | first9=HongBo | last10=Lü | first10=Chang | last11=Liu | first11=JianZhong | last12=Zuo | first12=Wei | last13=Su | first13=Yan | last14=Wen | first14=WeiBin | last15=Bian | first15=Wei | last16=Wang | first16=Min | last17=Xu | first17=Chun | last18=Kong | first18=DeQing | last19=Wang | first19=XiaoQian | last20=Wang | first20=Fang | last21=Geng | first21=Liang | last22=Zhang | first22=ZhouBin | last23=Zheng | first23=Lei | last24=Zhu | first24=XinYing | last25=Li | first25=JunDuo | last26=Ouyang | first26=ZiYuan | title=Laser altimetry data of Chang’E-1 and the global lunar DEM model | journal=Science China Earth Sciences | volume=53 | issue=11 | date=2010 | issn=1674-7313 | doi=10.1007/s11430-010-4020-1 | pages=1582–1593}} A notable example is an (officially) unnamed massif on the rim of the farside crater Zeeman that rises about 4.0 km above adjacent parts of the rim and about 7.57 km above the crater floor.{{cite web|last= Robinson|first= M.|title= Mountains of the Moon: Zeeman Mons|website= LROC.sese.asu|date= 20 November 2017|publisher= Arizona State University|url= http://lroc.sese.asu.edu/posts/944|access-date= 5 September 2020|archive-date= 12 November 2021|archive-url= https://web.archive.org/web/20211112022259/http://lroc.sese.asu.edu/posts/944|url-status= live}} The formation of the massif does not appear to be explainable simply on the basis of the impact event.{{cite conference|last1= Ruefer|first1= A.C.|last2= James|first2= P.B.|title= Zeeman Crater's Anomalous Massif|conference= 51st Lunar and Planetary Science Conference|page= 2673|date= March 2020|bibcode= 2020LPI....51.2673R|url= https://www.hou.usra.edu/meetings/lpsc2020/pdf/2673.pdf|access-date= 5 September 2020|archive-date= 9 September 2021|archive-url= https://web.archive.org/web/20210909015251/https://www.hou.usra.edu/meetings/lpsc2020/pdf/2673.pdf|url-status= live}}| group = n }}

| Mons Huygens

| {{sort|055|{{convert|abbr=on|5.3|km|mi|1}}[https://moonsummits.carrd.co The Moon's Highs and Lows]}}

| {{sort|0317|0.31}}

| impact

| Formed by the Imbrium impact.

Mons Mouton

| {{sort|055|{{convert|abbr=on|6|km|mi|1}}}}

| {{sort|0317|0.35}}

| impact

| Possibly formed by the South Pole-Aitken basin impact.

Southern Farside Mountain

| {{sort|055|{{convert|abbr=on|7|km|mi|1}}}}

| {{sort|0317|0.40}}

| impact

| Informal name of the Moon's tallest free-standing mountain. Possibly formed by the South Pole-Aitken basin impact. Not highest lunar peak by prominence, which would be Selenean summit.

Mons Hadley

| {{sort|045|{{convert|abbr=on|4.5|km|mi|1}}{{cite book | author=Fred W. Price | title=The Moon observer's handbook | publisher=Cambridge University Press | location=London | date=1988 | isbn= 978-0-521-33500-3}}{{cite book | last=Moore | first=Patrick | author-link = Patrick Moore | title=On the Moon | url=https://archive.org/details/patrickmooreonmo00patr | url-access=registration | publisher=Cassell & Co | location=London | date=2001 | isbn=9780304354696 }}}}

| {{sort|0259|0.26}}

| impact

| Formed by the Imbrium impact

Mons Rümker

| {{sort|011|{{convert|abbr=on|1.3|km|mi|2}}{{Cite conference

|author1=Wöhler, C. |author2=Lena, R. |author3=Pau, K. C. | title=The Lunar Dome Complex Mons Rümker: Morphometry, Rheology, and Mode of Emplacement

|conference=38th Lunar and Planetary Science Conference |issue=1338 |pages=1091

| date=16 March 2007 |bibcode=2007LPI....38.1091W }}}}

| {{sort|0063|0.063}}

| volcanic

| Largest volcanic construct on the Moon

rowspan=7|{{sort|05|Mars}}

| Olympus Mons

| {{sort|219|{{convert|abbr=on|21.9 - 26|km|mi ft}}{{refn |Due to limitations in the accuracy of the measurements and the lack of a precise definition of "base", it is difficult to say whether this peak or the central peak of Vesta's crater Rheasilvia is the tallest mountain in the Solar System.| group = n }}{{cite book|author=Neil F. Comins|title=Discovering the Essential Universe|url=https://books.google.com/books?id=qK_4mNve1DYC&pg=PA148|year=2012|publisher=W. H. Freeman|isbn=978-1-4292-5519-6|page=148}}{{cite journal|last1=Plescia|first1=J. B.|title=Morphometric properties of Martian volcanoes|journal=Journal of Geophysical Research|volume=109|issue=E3|pages=E03003|date=2004|issn=0148-0227|doi=10.1029/2002JE002031|bibcode = 2004JGRE..109.3003P |doi-access=free}}}}

| {{sort|0646|0.65}}

| volcanic

| Tallest mountain in the Solar System. Rises 26 km above northern plains,{{cite book|last=Comins|first=Neil F.|title=Discovering the Essential Universe|url=https://books.google.com/books?id=qK_4mNve1DYC&q=mons+olympus+height&pg=PA148|access-date=23 December 2012|date=4 January 2012|publisher=Macmillan|isbn=978-1-4292-5519-6|archive-date=9 November 2021|archive-url=https://web.archive.org/web/20211109170207/https://books.google.com/books?id=qK_4mNve1DYC&q=mons+olympus+height&pg=PA148|url-status=live}} (dry prominence) 1000 km away. Summit calderas are 60 x 80 km wide, up to 3.2 km deep;{{cite book|author=Carr, Michael H.|title=The Surface of Mars|url=https://books.google.com/books?id=uLHlJ6sjohwC|date=11 January 2007|publisher=Cambridge University Press|isbn=978-1-139-46124-5|page=51|access-date=25 October 2016|archive-date=24 June 2021|archive-url=https://web.archive.org/web/20210624172203/https://books.google.com/books?id=uLHlJ6sjohwC|url-status=live}} scarp around margin is up to 8 km high.{{cite journal|last1=Lopes|first1=R.|last2=Guest|first2=J. E.|last3=Hiller|first3=K.|last4= Neukum|first4= G.|title=Further evidence for a mass movement origin of the Olympus Mons aureole|journal=Journal of Geophysical Research|volume=87|issue= B12|date=January 1982|pages= 9917–9928|doi= 10.1029/JB087iB12p09917|bibcode=1982JGR....87.9917L|doi-access=free}} A shield volcano, the mean flank slope is a modest 5.2 degrees.

Ascraeus Mons

| {{sort|149|{{convert|abbr=on|14.9|km|mi|1}}}}

| {{sort|0440|0.44}}

| volcanic

| Tallest of the three Tharsis Montes

Elysium Mons

| {{sort|126|{{convert|abbr=on|12.6|km|mi|1}}}}

| {{sort|0372|0.37}}

| volcanic

|Highest volcano in Elysium

Arsia Mons

| {{sort|117|{{convert|abbr=on|11.7|km|mi|1}}}}

| {{sort|0345|0.35}}

| volcanic

| Summit caldera is {{convert|abbr=on|108|to|138|km|mi|0}} across

Pavonis Mons

| {{sort|084|{{convert|abbr=on|8.4|km|mi|1}}}}

| {{sort|0248|0.25}}

| volcanic

| Summit caldera is {{convert|abbr=on|4.8|km|mi|1}} deep

Anseris Mons

| {{sort|062|{{convert|abbr=on|6.2|km|mi|1}}JMARS MOLA elevation dataset. Christensen, P.; Gorelick, N.; Anwar, S.; Dickenshied, S.; Edwards, C.; Engle, E. (2007) "[http://adsabs.harvard.edu/abs/2007AGUFM.P11E..01C New Insights About Mars From the Creation and Analysis of Mars Global Datasets] {{Webarchive|url=https://web.archive.org/web/20181005094457/http://adsabs.harvard.edu/abs/2007AGUFM.P11E..01C |date=5 October 2018 }};" American Geophysical Union, Fall Meeting, abstract #P11E-01.}}

| {{sort|0183|0.18}}

| impact

| Among the highest nonvolcanic peaks on Mars, formed by the Hellas impact

Aeolis Mons ("Mount Sharp")

| {{sort|050|{{convert|abbr=on|4.5|to|5.5|km|mi|1}}{{cite web

| url = http://themis.asu.edu/features/galecrater

| title = Gale Crater's History Book

| work = Mars Odyssey THEMIS web site

| publisher = Arizona State University

| access-date = 7 December 2012

| archive-date = 4 November 2008

| archive-url = https://web.archive.org/web/20081104090706/http://themis.asu.edu/features/galecrater

| url-status = live

}}{{refn |About {{convert|5.25|km|mi|abbr=on}} high from the perspective of the landing site of Curiosity.{{cite journal

|last1=Anderson |first1=R. B. |last2=Bell III |first2=J. F. |date=2010

|title=Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site

|journal=International Journal of Mars Science and Exploration

|volume=5 |pages=76–128 |bibcode=2010IJMSE...5...76A

|doi=10.1555/mars.2010.0004}} | group = n }}}}

| {{sort|0162|0.16}}

| deposition and erosion{{refn|A crater central peak may sit below the mound of sediment. If that sediment was deposited while the crater was flooded, the crater may have once been entirely filled before erosional processes gained the upper hand. However, if the deposition was due to katabatic winds that descend the crater walls, as suggested by reported 3 degree radial slopes of the mound's layers, the role of erosion would have been to place an upper limit on the mound's growth.{{cite web

| last = Wall

| first = M.

| title = Bizarre Mars Mountain Possibly Built by Wind, Not Water

| publisher = Space.com

| date = 6 May 2013

| url = http://www.space.com/20986-mars-mountain-water-formation.html

| access-date = 13 May 2013

| archive-date = 7 November 2016

| archive-url = https://web.archive.org/web/20161107145327/http://www.space.com/20986-mars-mountain-water-formation.html

| url-status = live

}}{{cite journal|last1=Kite|first1=E. S.|last2=Lewis|first2=K. W.|last3=Lamb|first3=M. P.|last4=Newman|first4=C. E.|last5=Richardson|first5=M. I.|title=Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport|journal=Geology|volume= 41|issue=5|date= 2013|pages=543–546|issn= 0091-7613|doi= 10.1130/G33909.1|arxiv=1205.6840|bibcode=2013Geo....41..543K|s2cid=119249853}} Gravity measurements by Curiosity suggest the crater was never buried by sediment, consistent with the latter scenario.{{cite journal|last1= Lewis|first1=K. W.|last2= Peters|first2= S.|last3= Gonter|first3= K.|last4= Morrison|first4= S.|last5= Schmerr|first5= N.|last6= Vasavada|first6=A. R.|last7= Gabriel|first7= T.|title=A surface gravity traverse on Mars indicates low bedrock density at Gale crater|journal= Science|volume= 363|issue= 6426|year= 2019|pages= 535–537|doi= 10.1126/science.aat0738|pmid= 30705193|bibcode= 2019Sci...363..535L|s2cid=59567599|doi-access= free}}| group = n }}

| Formed from deposits in Gale crater;{{cite web |last=Agle |first=D. C. |title='Mount Sharp' On Mars Links Geology's Past and Future |url=http://www.nasa.gov/mission_pages/msl/news/msl20120328.html |date=28 March 2012 |publisher=NASA |access-date=31 March 2012 |archive-date=6 March 2017 |archive-url=https://web.archive.org/web/20170306035214/https://www.nasa.gov/mission_pages/msl/news/msl20120328.html |url-status=live }} the MSL rover has been ascending it since November 2014.{{cite news|last1=Webster|first1=Gay|last2=Brown|first2=Dwayne|title=Curiosity Arrives at Mount Sharp|url=http://mars.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1705|archive-url=https://web.archive.org/web/20141202064732/http://mars.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1705|url-status=dead|archive-date=2 December 2014|access-date=16 October 2016|work=NASA Jet Propulsion Laboratory|date=9 November 2014}}

{{sort|06|Vesta}}

| Rheasilvia central peak

| {{sort|220|{{convert|20-25|km|mi ft|abbr=on}}{{refn |Due to limitations in the accuracy of the measurements and the lack of a precise definition of "base", it is difficult to say whether this peak or the volcano Olympus Mons on Mars is the tallest mountain in the Solar System.| group = n }}{{cite web

|last=Vega

|first=P.

|title=New View of Vesta Mountain From NASA's Dawn Mission

|work=Jet Propulsion Lab's Dawn mission web site

|publisher=NASA

|date=11 October 2011

|url=http://dawn.jpl.nasa.gov/feature_stories/new_view_vesta_mountain.asp

|access-date=29 March 2012

|url-status=dead

|archive-url=https://web.archive.org/web/20111022092700/http://dawn.jpl.nasa.gov/feature_stories/new_view_vesta_mountain.asp

|archive-date=22 October 2011

}}{{Cite conference

| last1 = Schenk | first1 = P. | last2 = Marchi | first2 = S. | last3 = O'Brien | first3 = D. P. | last4 = Buczkowski | first4 = D. | last5 = Jaumann | first5 = R. | last6 = Yingst | first6 = A. | last7 = McCord | first7 = T. | last8 = Gaskell | first8 = R. | last9 = Roatsch | first9 = T. | last10 = Keller | first10 = H. E. | last11 = Raymond | first11 = C.A. | last12 = Russell | first12 = C. T.

| title = Mega-Impacts into Planetary Bodies: Global Effects of the Giant Rheasilvia Impact Basin on Vesta

| journal = Lunar and Planetary Science Conference | issue = 1659 | pages = 2757 | book-title = 43rd Lunar and Planetary Science Conference

| id = contribution 1659, id.2757

| date = 1 March 2012

| bibcode = 2012LPI....43.2757S

}}}}

| {{sort|8370|8.4}}

| impact

| Almost {{convert|200|km|mi|abbr=on}} wide. See also: List of largest craters in the Solar System

{{sort|07|Ceres}}

| Ahuna Mons

| {{sort|040|{{convert|abbr=on|4|km|mi|1}}{{cite web

| title = Dawn's First Year at Ceres: A Mountain Emerges

| website = JPL Dawn website

| publisher = Jet Propulsion Lab

| date = 2016-03-07

| url = http://dawn.jpl.nasa.gov/news/news-detail.html?id=5745

| access-date = 2016-03-08

| archive-date = 8 March 2016

| archive-url = https://web.archive.org/web/20160308171347/http://dawn.jpl.nasa.gov/news/news-detail.html?id=5745

| url-status = live

}}}}

| {{sort|0853|0.85}}

| cryovolcanic{{cite journal|last1=Ruesch|first1= O.|last2=Platz|first2= T.|last3=Schenk|first3= P.|last4=McFadden|first4=L. A.|last5=Castillo-Rogez|first5=J. C.|last6=Quick|first6=L. C.|last7=Byrne|first7= S.|last8=Preusker|first8= F.|last9=OBrien|first9=D. P.|last10=Schmedemann|first10= N.|last11=Williams|first11=D. A.|last12=Li|first12=J.- Y.|last13=Bland|first13=M. T.|last14=Hiesinger|first14= H.|last15=Kneissl|first15=T.|last16=Neesemann|first16= A.|last17=Schaefer|first17= M.|last18=Pasckert|first18=J. H.|last19=Schmidt|first19=B. E.|last20=Buczkowski|first20=D. L.|last21=Sykes|first21=M. V.|last22=Nathues|first22= A.|last23=Roatsch|first23= T.|last24=Hoffmann|first24= M.|last25=Raymond|first25=C. A.|last26=Russell|first26=C. T.|title=Cryovolcanism on Ceres|journal= Science|volume= 353|issue= 6303|date= 2016-09-02|pages= aaf4286|doi= 10.1126/science.aaf4286|pmid= 27701087|bibcode=2016Sci...353.4286R|doi-access=free}}

| Isolated steep-sided dome in relatively smooth area; max. height of ~ 5 km on steepest side; roughly antipodal to largest impact basin on Ceres

rowspan="4" | {{sort|08|Io}}

| Boösaule Montes "South"{{cite web

| last = Perry

| first = Jason

| title = Boösaule Montes

| work = Gish Bar Times blog

| date = 27 January 2009

| url = http://www.gishbartimes.org/2009/01/boosaule-montes.html

| access-date = 30 June 2012

| archive-date = 23 March 2016

| archive-url = https://web.archive.org/web/20160323130725/http://www.gishbartimes.org/2009/01/boosaule-montes.html

| url-status = live

}}

| {{sort|178|{{convert|abbr=on|17.5|to|18.2|km|mi|1}}{{cite web

|last = Schenk

|first = P.

|author2 = Hargitai, H.

|title = Boösaule Montes

|work = Io Mountain Database

|url = http://planetologia.elte.hu/io/index.phtml?nev=271s10

|access-date = 30 June 2012

|archive-date = 4 March 2016

|archive-url = https://web.archive.org/web/20160304072050/http://planetologia.elte.hu/io/index.phtml?nev=271s10

|url-status = live

}}}}

| {{sort|0999|1.0}}

| tectonic

| Has a {{convert|abbr=on|15|km|mi|0}} high scarp on its SE margin{{cite journal|last1=Schenk|first1=P.|last2=Hargitai|first2=H.|last3=Wilson|first3=R.|last4=McEwen|first4=A.|last5=Thomas|first5=P.|title=The mountains of Io: Global and geological perspectives from Voyager and Galileo|journal= Journal of Geophysical Research|volume= 106|issue= E12|date= 2001|pages= 33201|issn=0148-0227|doi=10.1029/2000JE001408|bibcode = 2001JGR...10633201S |doi-access=free}}

Ionian Mons east ridge

| {{sort|127|{{convert|abbr=on|12.7|km|mi|1}} (approx.){{cite web

|last = Schenk

|first = P.

|author2 = Hargitai, H.

|title = Ionian Mons

|work = Io Mountain Database

|url = http://planetologia.elte.hu/io/index.phtml?nev=236n08

|access-date = 30 June 2012

|archive-date = 4 March 2016

|archive-url = https://web.archive.org/web/20160304084747/http://planetologia.elte.hu/io/index.phtml?nev=236n08

|url-status = live

}}}}

| {{sort|0697|0.70}}

| tectonic

| Has the form of a curved double ridge

Euboea Montes

| {{sort|118|{{convert|abbr=on|10.5|to|13.4|km|mi|1}}{{cite web

|last = Schenk

|first = P.

|author2 = Hargitai, H.

|title = Euboea Montes

|work = Io Mountain Database

|url = http://planetologia.elte.hu/io/index.phtml?nev=335s47

|access-date = 30 June 2012

|archive-date = 4 March 2016

|archive-url = https://web.archive.org/web/20160304065413/http://planetologia.elte.hu/io/index.phtml?nev=335s47

|url-status = live

}}}}

| {{sort|0736|0.74}}

| tectonic

| A NW flank landslide left a 25,000 km3 debris apron{{cite web

| last = Martel

| first = L. M. V.

| title = Big Mountain, Big Landslide on Jupiter's Moon, Io

| work = NASA Solar System Exploration web site

| date = 16 February 2011

| url = http://solarsystem.nasa.gov/scitech/display.cfm?ST_ID=487

| access-date = 30 June 2012

| archive-url = https://web.archive.org/web/20110113200534/http://solarsystem.nasa.gov/scitech/display.cfm?ST_ID=487

| archive-date = 13 January 2011

| url-status = dead

}}{{refn |Among the Solar System's largest| group = n }}

unnamed (245° W, 30° S)

| {{sort|025|{{convert|abbr=on|2.5|km|mi|1}} (approx.){{cite journal|last1=Moore|first1=J. M.|last2=McEwen|first2=A. S.|last3=Albin|first3=E. F.|last4=Greeley|first4=R.|title=Topographic evidence for shield volcanism on Io|journal=Icarus |volume=67|issue=1 |date=1986|pages=181–183 |issn=0019-1035|doi=10.1016/0019-1035(86)90183-1|bibcode = 1986Icar...67..181M }}{{cite web

|last = Schenk

|first = P.

|author2 = Hargitai, H.

|title = Unnamed volcanic mountain

|work = Io Mountain Database

|url = http://planetologia.elte.hu/io/index.phtml?nev=245s29

|access-date = 6 December 2012

|archive-date = 4 March 2016

|archive-url = https://web.archive.org/web/20160304092524/http://planetologia.elte.hu/io/index.phtml?nev=245s29

|url-status = live

}}}}

| {{sort|0137|0.14}}

| volcanic

| One of the tallest of Io's many volcanoes, with an atypical conical form{{refn |Some of Io's paterae are surrounded by radial patterns of lava flows, indicating they are on a topographic high point, making them shield volcanoes. Most of these volcanoes exhibit relief of less than 1 km. A few have more relief; Ruwa Patera rises 2.5 to 3 km over its 300 km width. However, its slopes are only on the order of a degree.{{cite journal | last=Schenk |first=P. M. |author2=Wilson, R. R. |author3=Davies, R. G. |title=Shield volcano topography and the rheology of lava flows on Io |journal=Icarus |volume=169 |issue= 1|pages=98–110 |date=2004 |doi=10.1016/j.icarus.2004.01.015 |bibcode=2004Icar..169...98S}} A handful of Io's smaller shield volcanoes have steeper, conical profiles; the example listed is 60 km across and has slopes averaging 4° and reaching 6-7° approaching the small summit depression. | group = n }}

{{sort|09|Mimas}}

| Herschel central peak

| {{sort|070|{{convert|abbr=on|7|km|mi|0}} (approx.){{cite journal| doi = 10.1016/j.icarus.2004.05.009| last1 = Moore| first1 = Jeffrey M.| last2 = Schenk| first2 = Paul M.| last3 = Bruesch| first3 = Lindsey S.| last4 = Asphaug| first4 = Erik| last5 = McKinnon| first5 = William B.| date = October 2004| title = Large impact features on middle-sized icy satellites| journal = Icarus| volume = 171| issue = 2| pages = 421–443| url = http://planets.oma.be/ISY/pdf/article_Icy.pdf| bibcode = 2004Icar..171..421M| ref = {{sfnRef|Moore Schenk et al.|2004}}| access-date = 4 September 2015| archive-date = 2 October 2018| archive-url = https://web.archive.org/web/20181002122315/http://planets.oma.be/ISY/pdf/article_Icy.pdf| url-status = live}}}}

| {{sort|3530|3.5}}

| impact

| See also: List of largest craters in the Solar System

{{sort|10|Dione}}

| Janiculum Dorsa

| {{sort|015|{{convert|abbr=on|1.5|km|mi|1}}{{Cite journal | doi = 10.1016/j.icarus.2012.12.021| title = Flexure on Dione: Investigating subsurface structure and thermal history| journal = Icarus| volume = 223| issue = 1| pages = 418–422| date = March 2013| last1 = Hammond | first1 = N. P. | last2 = Phillips | first2 = C. B.|author2-link=Cynthia B. Phillips | last3 = Nimmo | first3 = F.| last4 = Kattenhorn | first4 = S. A. | bibcode = 2013Icar..223..418H}}}}

| {{sort|0267|0.27}}

| tectonic{{refn |Was apparently formed via contraction.{{Cite conference

| first1 = C. B. | last1 = Beddingfield | first2 = J. P. | last2 = Emery | first3 = D. M. | last3 = Burr

| title = Testing for a Contractional Origin of Janiculum Dorsa on the Northern, Leading Hemisphere of Saturn's Moon Dione

| conference = Lunar and Planetary Science Conference | issue = 1719 | book-title = 44th Lunar and Planetary Science Conference, LPI Contribution No. 1719

| pages = 1301 | date = March 2013 | bibcode = 2013LPI....44.1301B }}[https://www.scientificamerican.com/article/overlooked-ocean-worlds-fill-the-outer-solar-system/ Overlooked Ocean Worlds Fill the Outer Solar System] {{Webarchive|url=https://web.archive.org/web/20181226133924/https://www.scientificamerican.com/article/overlooked-ocean-worlds-fill-the-outer-solar-system/ |date=26 December 2018 }}. John Wenz, Scientific American. 4 October 2017. | group = n }}

| Surrounding crust depressed ca. 0.3 km.

rowspan="2" | {{sort|11|Titan}}

| Mithrim Montes

| {{sort|033|≤ {{convert|abbr=on|3.3|km|mi|1}}{{cite web | url = http://photojournal.jpl.nasa.gov/catalog/PIA20023 | title = PIA20023: Radar View of Titan's Tallest Mountains | date = 2016-03-24 | website = Photojournal.jpl.nasa.gov | publisher = Jet Propulsion Laboratory | access-date = 2016-03-25 | archive-date = 25 August 2017 | archive-url = https://web.archive.org/web/20170825130646/https://photojournal.jpl.nasa.gov/catalog/PIA20023 | url-status = live }}}}

| {{sort|0130|0.13}}

| tectonic

| May have formed due to global contraction{{cite journal | last = Mitri | first = G. | author2 = Bland, M. T. | author3 = Showman, A. P. | author4 = Radebaugh, J. | author5 = Stiles, B. | author6 = Lopes, R. M. C. | author7 = Lunine, Jonathan I. | author8 = Pappalardo, R. T. | title = Mountains on Titan: Modeling and observations | journal = Journal of Geophysical Research | volume = 115 | issue = E10002 | pages = E10002 | date = 2010 | url = http://www.agu.org/pubs/crossref/2010/2010JE003592.shtml | doi = 10.1029/2010JE003592 | access-date = 5 July 2012 | bibcode = 2010JGRE..11510002M | doi-access = free | archive-date = 26 January 2020 | archive-url = https://web.archive.org/web/20200126152012/https://www.agu.org/Publish-with-AGU/Publish | url-status = live }}

Doom Mons

| {{sort|014|{{convert|abbr=on|1.45|km|mi|2}}{{cite journal | last = Lopes | first = R. M. C. | author-link = Rosaly Lopes-Gautier | author2 = Kirk, R. L. | author3 = Mitchell, K. L. | author4 = LeGall, A. | author5 = Barnes, J. W. | author6 = Hayes, A. | author7 = Kargel, J. | author8 = Wye, L. | author9 = Radebaugh, J. | author10 = Stofan, E. R. | author11 = Janssen, M. A. | author12 = Neish, C. D. | author13 = Wall, S. D. | author14 = Wood, C. A. | author15 = Lunine, Jonathan I. | author-link15 = Jonathan Lunine | author16 = Malaska, M. J. | title = Cryovolcanism on Titan: New results from Cassini RADAR and VIMS | journal = Journal of Geophysical Research: Planets | volume = 118 | issue = 3 | pages = 416 | date = 19 March 2013 | doi = 10.1002/jgre.20062 | bibcode = 2013JGRE..118..416L | url = https://hal.archives-ouvertes.fr/hal-00807740/file/Lopes_et_al-2013-Journal_of_Geophysical_Research__Planets.pdf | doi-access = free | access-date = 1 September 2019 | archive-date = 1 September 2019 | archive-url = https://web.archive.org/web/20190901143711/https://hal.archives-ouvertes.fr/hal-00807740/file/Lopes_et_al-2013-Journal_of_Geophysical_Research__Planets.pdf | url-status = live }}}}

| {{sort|0056|0.056}}

| cryovolcanic

| Adjacent to Sotra Patera, a {{convert|abbr=on|1.7|km|mi|1}} deep collapse feature

{{sort|12|Iapetus}}

| equatorial ridge

| {{sort|200|{{convert|abbr=on|20|km|mi|0}} (approx.){{cite journal|last=Giese|first=B.|author2=Denk, T.|author3=Neukum, G.|author4=Roatsch, T.|author5=Helfenstein, P.|author6=Thomas, P. C.|author7=Turtle, E. P.|author8=McEwen, A.|author9=Porco, C. C.|title=The topography of Iapetus' leading side|journal=Icarus|volume=193|issue=2|date=2008|pages=359–371|issn=0019-1035|url=http://www.geoinf.fu-berlin.de/publications/denk/2008/GieseEtAl_IapetusTopography_Icarus_2008.pdf|doi=10.1016/j.icarus.2007.06.005|bibcode=2008Icar..193..359G|access-date=9 December 2012|archive-date=13 March 2020|archive-url=https://web.archive.org/web/20200313053214/http://www.geo.fu-berlin.de/geol/fachrichtungen/planet/|url-status=live}}}}

| {{sort|2720|2.7}}

| uncertain{{refn |Hypotheses of origin include crustal readjustment associated with a decrease in oblateness due to tidal locking,{{cite journal|last1=Porco|first1=C. C.|author-link=Carolyn Porco|display-authors=etal|title=Cassini Imaging Science: Initial Results on Phoebe and Iapetus|journal=Science|volume=307|issue=5713|date=2005|pages=1237–1242|issn=0036-8075|doi=10.1126/science.1107981|pmid=15731440|id=2005Sci...307.1237P|bibcode=2005Sci...307.1237P|s2cid=20749556|url=https://authors.library.caltech.edu/36635/7/Porco_Iapetus_SOM.pdf|access-date=13 January 2019|archive-date=19 July 2018|archive-url=https://web.archive.org/web/20180719075213/https://authors.library.caltech.edu/36635/7/Porco_Iapetus_SOM.pdf|url-status=live}}{{cite journal

| last=Kerr

| first=Richard A.

| date=2006-01-06

| title=How Saturn's Icy Moons Get a (Geologic) Life

| journal=Science

| volume=311

| issue=5757

| pages=29

| doi=10.1126/science.311.5757.29

| pmid=16400121

| s2cid=28074320

| doi-access=free

}} and deposition of deorbiting material from a former ring around the moon.{{cite journal|last1=Ip|first1=W.-H.|title=On a ring origin of the equatorial ridge of Iapetus|journal=Geophysical Research Letters|volume=33|issue=16|page=L16203|date=2006|issn=0094-8276|doi=10.1029/2005GL025386|url=http://inms.space.swri.edu/publications/2006/Ip_2006.pdf|bibcode=2006GeoRL..3316203I|doi-access=free|access-date=9 December 2012|archive-date=26 June 2019|archive-url=https://web.archive.org/web/20190626051835/http://inms.space.swri.edu/publications/2006/Ip_2006.pdf|url-status=live}} | group = n }}

| Individual peaks have not been measured

{{sort|13|Oberon}}

| unnamed ("limb mountain")

| {{sort|110|{{convert|abbr=on|11|km|mi|0}} (approx.)}}

| {{sort|1440|1.4}}

| impact (?)

| A value of 6 km was given shortly after the Voyager 2 encounter{{cite journal

| last = Moore | first = P. | author-link = Patrick Moore |author2=Henbest, N.

| title = Uranus - the View from Voyager

| journal = Journal of the British Astronomical Association | volume = 96 | issue = 3 | pages = 131–137

| date = April 1986 | bibcode = 1986JBAA...96..131M

}}

rowspan="3" | {{sort|14|Pluto}}

| Tenzing Montes, peak "T2"

| {{sort|062|~{{convert|abbr=on|6.2|km|mi|1}}}}

| {{sort|0522|0.52}}

| tectonic (?)

| Composed of water ice;{{cite journal|last1=Hand|first1=E. | last2 = Kerr | first2 = R. |title=Pluto is alive—but where is the heat coming from?|journal=Science|date=15 July 2015|doi=10.1126/science.aac8860}} named after Tenzing Norgay{{cite web |last=Pokhrel |first=Rajan |title=Nepal's mountaineering fraternity happy over Pluto mountains named after Tenzing Norgay Sherpa - Nepal's First Landmark In The Solar System |url=http://thehimalayantimes.com/latest/plutos-mountains-named-after-tenzing-norgay-sherpa |date=19 July 2015 |work=The Himalayan Times |access-date=19 July 2015 |archive-date=13 August 2015 |archive-url=https://web.archive.org/web/20150813070429/http://thehimalayantimes.com/latest/plutos-mountains-named-after-tenzing-norgay-sherpa/ |url-status=live }}

Piccard Mons{{cite web

| url = http://pluto.jhuapl.edu/News-Center/News-Article.php?page=20151109

| title = At Pluto, New Horizons Finds Geology of All Ages, Possible Ice Volcanoes, Insight into Planetary Origins

| date = 2015-11-09

| website = New Horizons News Center

| publisher = The Johns Hopkins University Applied Physics Laboratory LLC

| access-date = 2015-11-09

| archive-date = 10 November 2015

| archive-url = https://archive.today/20151110113044/http://pluto.jhuapl.edu/News-Center/News-Article.php?page=20151109

| url-status = live

}}{{cite journal

| url = http://www.nature.com/news/icy-volcanoes-may-dot-pluto-s-surface-1.18756

| title = Icy volcanoes may dot Pluto's surface

| last = Witze

| first = A.

| date = 2015-11-09

| journal = Nature

| access-date = 2015-11-09

| doi = 10.1038/nature.2015.18756

| s2cid = 182698872

| archive-date = 10 November 2015

| archive-url = https://archive.today/20151110115716/http://www.nature.com/news/icy-volcanoes-may-dot-pluto-s-surface-1.18756

| url-status = live

}}

| {{sort|055|~{{convert|abbr=on|5.5|km|mi|1}}{{cite journal|last1= Schenk|first1=P. M.|last2= Beyer|first2=R. A.|last3= McKinnon|first3=W. B.|last4= Moore|first4=J. M.|last5= Spencer|first5=J. R.|last6= White|first6=O. L.|last7= Singer|first7= K.|last8= Nimmo|first8= F.|last9= Thomason|first9= C.|last10= Lauer|first10=T. R.|last11= Robbins|first11= S.|last12= Umurhan|first12=O. M.|last13= Grundy|first13=W. M.|last14= Stern|first14=S. A.|last15= Weaver|first15=H. A.|last16= Young|first16=L. A.|last17= Smith|first17=K. E.|last18= Olkin|first18= C.|title= Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons|journal= Icarus|volume= 314|year= 2018|pages= 400–433|doi= 10.1016/j.icarus.2018.06.008|bibcode= 2018Icar..314..400S|s2cid=126273376 }}}}

| {{sort|0463|0.46}}

| cryovolcanic (?)

| ~220 km across;{{cite web

| url = http://pluto.jhuapl.edu/Multimedia/Science-Photos/image.php?page=&gallery_id=2&image_id=375

| title = Ice Volcanoes and Topography

| date = 2015-11-09

| website = New Horizons Multimedia

| publisher = The Johns Hopkins University Applied Physics Laboratory LLC

| access-date = 2015-11-09

| archive-url = https://web.archive.org/web/20151113211019/http://pluto.jhuapl.edu/Multimedia/Science-Photos/image.php?page=&gallery_id=2&image_id=375

| archive-date = 13 November 2015

| url-status = dead

}} central depression is 11 km deep

Wright Mons

| {{sort|047| ~{{convert|abbr=on|4.7|km|mi|1}}}}

| {{sort|0396|0.40}}

| cryovolcanic (?)

| ~160 km across; summit depression ~56 km across{{cite web

| url = http://pluto.jhuapl.edu/Multimedia/Science-Photos/image.php?page=&gallery_id=2&image_id=374

| title = Ice Volcanoes on Pluto?

| date = 2015-11-09

| website = New Horizons Multimedia

| publisher = The Johns Hopkins University Applied Physics Laboratory LLC

| access-date = 2015-11-09

| archive-url = https://web.archive.org/web/20170911024027/http://pluto.jhuapl.edu/Multimedia/Science-Photos/image.php?page=&gallery_id=2&image_id=374

| archive-date = 11 September 2017

| url-status = dead

}} and 4.5 km deep

rowspan="2" | {{sort|15|Charon}}

| Butler Mons{{cite journal|last1= Schenk|first1=P. M.|last2= Beyer|first2=R. A.|last3= McKinnon|first3=W. B.|last4= Moore|first4=J. M.|last5= Spencer|first5=J. R.|last6= White|first6=O. L.|last7= Singer|first7= K.|last8= Umurhan|first8=O. M.|last9= Nimmo|first9= F.|last10= Lauer|first10=T. R.|last11= Grundy|first11=W. M.|last12= Robbins|first12= S.|last13= Stern|first13=S. A.|last14= Weaver|first14=H. A.|last15= Young|first15=L. A.|last16= Smith|first16=K. E.|last17= Olkin|first17= C.|title= Breaking up is hard to do: Global cartography and topography of Pluto's mid-sized icy Moon Charon from New Horizons|journal= Icarus|volume= 315|year= 2018|pages= 124–145|doi= 10.1016/j.icarus.2018.06.010|bibcode=2018Icar..315..124S |s2cid=125833113 }}

| {{sort|045| ≥ {{convert|abbr=on|4.5|km|mi|1}}}}

| {{sort|0743|0.74}}

| tectonic (?)

| Vulcan Planitia, the southern plains, has several isolated peaks, possibly tilted crustal blocks

Dorothy central peak

| {{sort|040| ~{{convert|abbr=on|4.0|km|mi|1}}}}

| {{sort|0660|0.66}}

| impact

| North polar impact basin Dorothy, Charon's largest, is ~240 km across and 6 km deep

{{sort|16|{{mpl|2002 MS|4}}}}

| unnamed

| {{sort|250|{{convert|abbr=on|20–29|km|mi}}}}

| {{sort|6281|6.3}}

| ?

| Discovered by stellar occultation; it is unclear whether this feature may be a genuine topographic peak or a transiting/occulting satellite.{{cite journal

|display-authors = etal

|first1 = F. L. |last1 = Rommel

|first2 = F. |last2 = Braga-Ribas

|first3 = J. L. |last3 = Ortiz

|first4 = B. |last4 = Sicardy

|first5 = P. |last5 = Santos-Sanz

|first6 = J. |last6 = Desmars

|title = A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4 measured from stellar occultations

|journal = Astronomy & Astrophysics

|date = August 2023

|volume = 678

|issue =

|id =

|pages = A167

|doi-access =

|doi = 10.1051/0004-6361/202346892

|arxiv = 2308.08062

|bibcode = 2023A&A...678A.167R}}

=Tallest mountains by elevation=

Gallery

The following images are shown in order of decreasing base-to-peak height.

File:Olympus Mons alt.jpg | Olympus Mons on Mars as viewed from Viking 1 in 1978

File:Iapetus equatorial ridge.jpg | Cassini image of Iapetus's equatorial ridge

File:PIA00323 Boösaule Montes crop2 sharp.png | Voyager 1 photo of Io's highest peak, Boösaule Montes "South"

File:Ascraeus Mons Flank Terraces.jpg | Ascraeus Mons (THEMIS IR with MOLA altimetry, 3x vertical stretch), Mars

File:PIA00327 crop 2x.png | Io's Euboea Montes (below top left), Haemus Montes (lower right); north is left

File:Mauna Kea from Mauna Loa Observatory, Hawaii - 20100913.jpg | Mauna Kea (from Mauna Loa), Hawaii

File:Teide 2011.jpg|Teide, Canary Islands

File:Herschel crater on Mimas PIA12570 crop.jpg | Cassini photo of Herschel crater on Mimas and its central peak

File:Maxwell Montes of planet Venus.jpg | Magellan SAR image of Skadi Mons in Venus's Maxwell Montes

File:Mount McKinley Denali Closeup 2800px.jpg | Denali (Mount McKinley), Alaska

File:673885main PIA15986-full full.jpg | Aeolis Mons ("Mount Sharp"), Mars (as viewed by the rover Curiosity on 6 August 2012).{{refn |A linearized wide-angle hazcam image that makes the mountain look steeper than it actually is. The highest peak is not visible in this view.| group = n }}

File:Venus - 3D Perspective View of Maat Mons.jpg | Maat Mons, Venus (radar imaging plus altimetry, 10x vertical exaggeration)

File:Apollo 15 Rover, Irwin.jpg | The Moon's Mons Hadley, near the Apollo 15 landing site (1971)

File:Everest kalapatthar.jpg | Mount Everest (Sagarmāthā/ Chomolungma), Nepal/Tibet

File:PIA20349 crop - Ceres' Ahuna Mons side view.jpg | Ahuna Mons on Ceres, imaged by Dawn from LAMO

File:Pluto possible cryovolcano - Wright Mons.jpg | Pluto's possible cryovolcano Wright Mons, showing its central depression

File:PIA19947-NH-Pluto-Norgay-Hillary-Mountains-20150714.jpg | New Horizons view of Pluto's Tenzing Montes in the left foreground (also in preceding image) and Hillary Montes on the horizon

File:PIA20023 - Radar View of Titan's Tallest Mountains.jpg | Cassini SAR image of Titan's Mithrim Montes, showing three parallel ridges

File:Sotra Facula.jpg | Radar-generated view of Titan's cryovolcanic Doom Mons and Sotra Patera (10x vertical stretch)

See also

Notes

{{reflist

| group = n

}}

References

{{reflist}}