Lommel function
The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:
:
Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by {{harvs|txt|authorlink=Eugen von Lommel|first=Eugen von|last= Lommel|year=1880}},
:
:
\left(\sin \left[(\mu - \nu)\frac{\pi}{2}\right] J_\nu(z) - \cos \left[(\mu - \nu)\frac{\pi}{2}\right] Y_\nu(z)\right),
where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.
The s function can also be written asWatson's "Treatise on the Theory of Bessel functions" (1966), Section 10.7, Equation (10)
:
where pFq is a generalized hypergeometric function.
See also
References
{{reflist}}
- {{Citation | last1=Erdélyi | first1=Arthur | last2=Magnus | first2=Wilhelm | author2-link=Wilhelm Magnus | last3=Oberhettinger | first3=Fritz | last4=Tricomi | first4=Francesco G. | title=Higher transcendental functions. Vol II | publisher=McGraw-Hill Book Company, Inc., New York-Toronto-London | mr=0058756 | year=1953 | url=http://apps.nrbook.com/bateman/Vol2.pdf}}
- {{citation|first=E.|last= Lommel|title=Ueber eine mit den Bessel'schen Functionen verwandte Function|journal= Math. Ann. |volume= 9 |year=1875|pages= 425–444|doi=10.1007/BF01443342|issue=3|url= https://zenodo.org/record/1568162}}
- {{citation|first=E.|last= Lommel|title=Zur Theorie der Bessel'schen Funktionen IV|journal= Math. Ann. |volume= 16 |year=1880|pages= 183–208|doi=10.1007/BF01446386|issue=2}}
- {{dlmf|id=11.9|first=R. B. |last=Paris}}
- {{springer|id=l/l060800|first=E.D. |last=Solomentsev}}
External links
- Weisstein, Eric W. [http://mathworld.wolfram.com/LommelDifferentialEquation.html "Lommel Differential Equation."] From MathWorld—A Wolfram Web Resource.
- Weisstein, Eric W. [http://mathworld.wolfram.com/LommelFunction.html "Lommel Function."] From MathWorld—A Wolfram Web Resource.