Mean airway pressure

{{Short description|Average air pressure in assisted ventilation}}

{{Distinguish|mean arterial pressure}}

Mean airway pressure typically refers to the mean pressure applied during positive-pressure mechanical ventilation. Mean airway pressure correlates with alveolar ventilation, arterial oxygenation,{{cite journal|vauthors=Stewart AR, Finer NN, Peters KL | title=Effects of alterations of inspiratory and expiratory pressures and inspiratory/expiratory ratios on mean airway pressure, blood gases, and intracranial pressure. | journal=Pediatrics | year= 1981 | volume= 67 | issue= 4 | pages= 474–81 | doi=10.1542/peds.67.4.474 | pmid=6789294 | s2cid=2214900 }} hemodynamic performance, and barotrauma.{{cite journal|vauthors=Marini JJ, Ravenscraft SA | title=Mean airway pressure: physiologic determinants and clinical importance--Part 2: Clinical implications. | journal=Crit Care Med | year= 1992 | volume= 20 | issue= 11 | pages= 1604–16 | pmid=1424706 | doi= 10.1097/00003246-199211000-00020| s2cid=42496727 }} It can also match the alveolar pressure if there is no difference between inspiratory and expiratory resistance.{{Cite journal |last=Hess |first=Dean |date=October 21, 2014 |title=Respiratory Mechanics in Mechanically Ventilated Patients |url=https://rc.rcjournal.com/content/respcare/early/2014/10/21/respcare.03410.full.pdf |journal=Respiratory Care |volume=59 |issue=11 |pages=1773–1794 |doi=10.4187/respcare.03410 |pmid=25336536 |s2cid=5706765 |archive-date=July 9, 2022 |access-date=May 27, 2022 |archive-url=https://web.archive.org/web/20220709190859/https://rc.rcjournal.com/content/respcare/early/2014/10/21/respcare.03410.full.pdf |url-status=live }}

Equations

There are several equations aimed at determining the real mean airway pressure.

= Volume control ventilation =

In ventilation with a square flow waveform this equation can be used:

\bar{P}_{aw}=0.5\times(PIP - PEEP) \times (T_I/T_{tot})+PEEP

where:

  • \bar{P}_{aw} = mean airway pressure
  • PIP= peak inspiratory pressure
  • PEEP= peak end expiratory pressure
  • T_I= inspiratory time
  • T_{tot}= cycle time

= Pressure control ventilation =

During pressure control ventilation this variant of the equation can be used:

\bar{P}_{aw}= (PIP - PEEP) \times (T_I/T_{tot})+PEEP

where:

  • \bar{P}_{aw} = mean airway pressure
  • PIP= peak inspiratory pressure
  • PEEP= peak end expiratory pressure
  • T_I= inspiratory time
  • T_{tot}= cycle time

= Airway pressure release ventilation =

File:Airway pressure release ventilation figure 2007.jpg

In airway pressure release ventilation (APRV) a variation of the previous equation must be used for the variables:

:\bar{P}_{aw} = \frac{(P_{high} \times T_{high})\, + (P_{low} \times T_{low})} {T_{high} + T_{low}}

:where:

:* \bar{P}_{aw}= mean airway pressure

:* {P}_{high}= peak inspiratory pressure (PIP)

:* {P}_{low}= peak end expiratory pressure

:* {T}_{high}= time spent at {P}_{high}

:* {T}_{low}= time spent at {P}_{low}{{Cite journal |last=Daoud |first=Ehab G. |date=2007 |title=Airway pressure release ventilation |journal=Annals of Thoracic Medicine |volume=2 |issue=4 |pages=176–179 |doi=10.4103/1817-1737.36556 |issn=1817-1737 |pmc=2732103 |pmid=19727373 |doi-access=free }}

= Other equations =

:M_{PAW} = \frac{f \times T_i}{60} \times (P_{IP} - PEEP) + PEEP

:M_{PAW} = \frac{F_1}{F_1+F_E} \times P_{IP} + \left(1 - \frac{F_1}{F_1+F_E}\right) \times PEEP

:M_{PAW} = \frac{(R)(T_i)(P_I)+[60-(R)(T_i)](PEEP)}{60}

:M_{PAW} = \frac{f \times T_i}{60} \times (P_{IP} - PEEP) + PEEP {{cite book|author=David W. Chang|title=Respiratory care calculations|url=https://books.google.com/books?id=uzjh0nOWtRYC&pg=PA251|access-date=30 March 2012|year=1999|publisher=Cengage Learning|isbn=978-0-7668-0517-0|pages=251–}}

:M_{PAW} = \frac{(T_i \times P_{IP}) + (T_e \times PEEP)}{T_i+T_e}

Clinical significance

Mean airway pressure has been shown to have a similar correlation as plateau pressure to mortality.{{Cite journal |last1=Sahetya |first1=Sarina |last2=Wu |first2=David |last3=Brooks |first3=Morgan |date=May 2020 |title=Mean Airway Pressure As a Predictor of 90-Day Mortality in Mechanically Ventilated Patients |journal=Critical Care Medicine |volume=48 |issue=5 |pages=688–695 |doi=10.1097/CCM.0000000000004268|pmid=32079893 |pmc=8273919 }}

MAP is closely associated with mean alveolar pressure and shows the stresses exerted on the lung parenchyma on mechanical ventilation.{{Cite journal |last1=Su |first1=Longxiang |last2=Pan |first2=Pan |last3=Liu |first3=Dawei |last4=Long |first4=Yun |date=2021-10-01 |title=Mean airway pressure has the potential to become the core pressure indicator of mechanical ventilation: Raising to the front from behind the clinical scenes |journal=Journal of Intensive Medicine |language=en |volume=1 |issue=2 |pages=96–98 |doi=10.1016/j.jointm.2021.04.002 |pmid=36788801 |pmc=9923962 |s2cid=236575021 |issn=2667-100X|doi-access=free }}

In high frequency oscillatory ventilation, it has been suggested to set the mean airway pressure six above the lower inflection point on the lungs P-V curve.{{Cite journal |last1=Goddon |first1=Sven |last2=Fujino |first2=Yuji |last3=Hromi |first3=Jonathan M. |last4=Kacmarek |first4=Robert M. |date=May 2001 |title=Optimal Mean Airway Pressure during High-frequency Oscillation: Predicted by the Pressure–Volume Curve |journal=Anesthesiology |volume=94 |issue=5 |pages=862–869 |doi=10.1097/00000542-200105000-00026 |pmid=11388539 |s2cid=9604584 |issn=0003-3022|doi-access=free }}

See also

References

{{Mechanical ventilation}}

Category:Mechanical ventilation