Mittag-Leffler polynomials

{{Short description|Mathematical functions}}

{{distinguish|Mittag-Leffler function}}

In mathematics, the Mittag-Leffler polynomials are the polynomials gn(x) or Mn(x) studied by {{harvs|txt|last=Mittag-Leffler|year=1891|authorlink=Gösta Mittag-Leffler}}.

Mn(x) is a special case of the Meixner polynomial Mn(x;b,c) at b = 0, c = -1.

Definition and examples

===Generating functions===

The Mittag-Leffler polynomials are defined respectively by the generating functions

: \displaystyle \sum_{n=0}^{\infty} g_n(x)t^n :=\frac{1}{2}\Bigl(\frac{1+t}{1-t} \Bigr)^x and

: \displaystyle \sum_{n=0}^{\infty} M_n(x)\frac{t^n}{n!}:=\Bigl(\frac{1+t}{1-t} \Bigr)^x=(1+t)^x(1-t)^{-x}=\exp(2x\text{ artanh } t).

They also have the bivariate generating function{{citation | title=see the formula section of OEIS A142978| url=https://oeis.org/A142978}}

: \displaystyle \sum_{n=1}^{\infty}\sum_{m=1}^{\infty} g_n(m)x^my^n =\frac{xy}{(1-x)(1-x-y-xy)}.

=Examples=

The first few polynomials are given in the following table. The coefficients of the numerators of the g_n(x) can be found in the OEIS,{{citation | title=see OEIS A064984| url= https://oeis.org/A064984}} though without any references, and the coefficients of the M_n(x) are in the OEIS{{citation | title=see OEIS A137513| url= https://oeis.org/A137513}} as well.

:

class="wikitable"

!n !! gn(x) !! Mn(x)

0\frac{1}{2}1
1x2x
2x^24x^2
3{\frac{1}{3}} (x+2x^3)8x^3+4x
4{\frac{1}{3}} (2x^2+x^4)16x^4+32x^2
5{\frac{1}{15}} (3x+10x^3+2x^5)32 x^5 + 160 x^3 + 48 x
6{\frac{1}{45}} (23x^2+20x^4+2x^6)64 x^6 + 640 x^4 + 736 x^2
7{\frac{1}{315}} (45 x + 196 x^3 + 70 x^5 + 4 x^7)128 x^7 + 2240 x^5 + 6272 x^3 + 1440 x
8{\frac{1}{315}} (132 x^2 + 154 x^4 + 28 x^6 + x^8)256 x^8 + 7168 x^6 + 39424 x^4 + 33792 x^2
9{\frac{1}{2835}} (315 x + 1636 x^3 + 798 x^5 + 84 x^7 + 2 x^9)512 x^9 + 21504 x^7 + 204288 x^5 + 418816 x^3 + 80640 x
10{\frac{1}{14175}} (5067 x^2 + 7180 x^4 + 1806 x^6 + 120 x^8 + 2 x^{10})1024 x^{10} + 61440 x^8 + 924672 x^6 + 3676160 x^4 + 2594304 x^2

Properties

The polynomials are related by M_n(x)=2\cdot{n!} \, g_n(x) and we have g_n(1)=1 for n\geqslant 1 . Also g_{2k}(\frac12)=g_{2k+1}(\frac12)=\frac12\frac{(2k-1)!!}{(2k)!!}=\frac12\cdot \frac{1\cdot 3\cdots (2k-1) }{2\cdot 4\cdots (2k)} .

=Explicit formulas=

Explicit formulas are

: g_n(x) = \sum_ {k = 1}^{n} 2^{k-1}\binom{n-1}{n-k}\binom xk = \sum_ {k = 0}^{n-1} 2^{k}\binom{n-1}{k}\binom x{k+1}

: g_n(x) = \sum_{k = 0}^{n-1} \binom{n-1}k\binom{k+x}n

: g_n(m) = \frac12\sum_{k = 0}^m \binom mk\binom{n-1+m-k}{m-1}=\frac12\sum_{k = 0}^{\min(n,m)} \frac m{n+m-k}\binom{n+m-k}{k,n-k,m-k}

(the last one immediately shows ng_n(m)=mg_m(n) , a kind of reflection formula), and

: M_n(x)=(n-1)!\sum_ {k = 1}^{n}k2^k\binom nk \binom xk , which can be also written as

: M_n(x)=\sum_ {k = 1}^{n}2^k\binom nk(n-1)_{n-k}(x)_k, where (x)_n = n!\binom xn = x(x-1)\cdots(x-n+1) denotes the falling factorial.

In terms of the Gaussian hypergeometric function, we have{{cite journal | author=Özmen, Nejla | author2=Nihal, Yılmaz | name-list-style=amp | title=On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials | language=English | year=2019 | url=https://dergipark.org.tr/en/download/article-file/843805}}

: g_n(x) = x\!\cdot {}_2\!F_1 (1-n,1-x; 2; 2).

=Reflection formula=

As stated above, for m,n\in\mathbb N , we have the reflection formula ng_n(m)=mg_m(n) .

=Recursion formulas=

The polynomials M_n(x) can be defined recursively by

: M_n(x)=2xM_{n-1}(x)+(n-1)(n-2)M_{n-2}(x), starting with M_{-1}(x)=0 and M_{0}(x)=1.

Another recursion formula, which produces an odd one from the preceding even ones and vice versa, is

: M_{n+1}(x) = 2x \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n!}{(n-2k)!} M_{n-2k}(x), again starting with M_0(x) = 1.

As for the g_n(x), we have several different recursion formulas:

: \displaystyle (1)\quad g_n(x + 1) - g_{n-1}(x + 1)= g_n(x) + g_{n-1}(x)

: \displaystyle (2)\quad (n + 1)g_{n+1}(x) - (n - 1)g_{n-1}(x) = 2xg_n(x)

: (3)\quad x\Bigl(g_n(x+1)-g_n(x-1)\Bigr) = 2ng_n(x)

: (4)\quad g_{n+1}(m)= g_{n}(m)+2\sum_{k=1}^{m-1}g_{n}(k)=g_{n}(1)+g_{n}(2)+\cdots+g_{n}(m)+g_{n}(m-1) +\cdots+g_{n}(1)

Concerning recursion formula (3), the polynomial g_n(x) is the unique polynomial solution of the difference equation x(f(x+1)-f(x-1)) = 2nf(x), normalized so that f(1) = 1.{{citation | title=see the comment section of OEIS A142983 | url=https://oeis.org/A142983}} Further note that (2) and (3) are dual to each other in the sense that for x\in\mathbb N , we can apply the reflection formula to one of the identities and then swap x and n to obtain the other one. (As the g_n(x) are polynomials, the validity extends from natural to all real values of x .)

===Initial values===

The table of the initial values of g_n(m) (these values are also called the "figurate numbers for the n-dimensional cross polytopes" in the OEIS{{citation | title=see OEIS A142978| url=https://oeis.org/A142978/table}}) may illustrate the recursion formula (1), which can be taken to mean that each entry is the sum of the three neighboring entries: to its left, above and above left, e.g. g_5(3)=51=33+8+10. It also illustrates the reflection formula ng_n(m)=mg_m(n) with respect to the main diagonal, e.g. 3\cdot44=4\cdot33 .

:

class="wikitable"

!{{diagonal split header|m |n}} !! 1!! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !! 10

1

| style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1

2

| style="text-align: right;" |2 || style="text-align: right;" |4 || style="text-align: right;" |6 || style="text-align: right;" |8 || style="text-align: right;" |10 || style="text-align: right;" |12 || style="text-align: right;" |14 || style="text-align: right;" |16 || style="text-align: right;" |18 || style="text-align: right;" |

3

| style="text-align: right;" |3 || style="text-align: right;" |9 || style="text-align: right;" |19 || style="text-align: right;" |33 || style="text-align: right;" |51 || style="text-align: right;" |73 || style="text-align: right;" |99 || style="text-align: right;" |129 || style="text-align: right;" | || style="text-align: right;" |

4

| style="text-align: right;" |4 || style="text-align: right;" |16 || style="text-align: right;" |44 || style="text-align: right;" |96 || style="text-align: right;" |180 || style="text-align: right;" |304 || style="text-align: right;" |476 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" |

5

| style="text-align: right;" |5 || style="text-align: right;" |25 || style="text-align: right;" |85 || style="text-align: right;" |225 || style="text-align: right;" |501 || style="text-align: right;" |985 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" |

6

| style="text-align: right;" |6 || style="text-align: right;" |36 || style="text-align: right;" |146 || style="text-align: right;" |456 || style="text-align: right;" |1182 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" |

7

| style="text-align: right;" |7 || style="text-align: right;" |49 || style="text-align: right;" |231 || style="text-align: right;" |833 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" |

8

| style="text-align: right;" |8 || style="text-align: right;" |64 || style="text-align: right;" |344 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" |

9

| style="text-align: right;" |9 || style="text-align: right;" |81 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" |

10

| style="text-align: right;" | 10 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | ||

=Orthogonality relations=

For m,n\in\mathbb N the following orthogonality relation holds:{{cite journal | author=Stankovic, Miomir S. | author2=Marinkovic, Sladjana D. | author3=Rajkovic, Predrag M. | name-list-style=amp | title=Deformed Mittag–Leffler Polynomials | language=English | year=2010 | arxiv=1007.3612 }}

: \int_{-\infty}^{\infty}\frac{g_n(-iy)g_m(iy)}{y \sinh \pi y} dy=\frac 1{2n}\delta_{mn}.

(Note that this is not a complex integral. As each g_n is an even or an odd polynomial, the imaginary arguments just produce alternating signs for their coefficients. Moreover, if m and n have different parity, the integral vanishes trivially.)

===Binomial identity===

Being a Sheffer sequence of binomial type, the Mittag-Leffler polynomials M_n(x) also satisfy the binomial identity{{citation | title=Mathworld entry "Mittag-Leffler Polynomial" | url=https://mathworld.wolfram.com/Mittag-LefflerPolynomial.html}}

: M_n(x+y)=\sum_{k=0}^n\binom nk M_k(x)M_{n-k}(y).

===Integral representations===

Based on the representation as a hypergeometric function, there are several ways of representing g_n(z) for |z|<1 directly as integrals,{{cite journal | last1=Bateman | first1=H. | title=The polynomial of Mittag-Leffler | jstor=86958 | mr=0002381 | year=1940 | journal=Proceedings of the National Academy of Sciences of the United States of America | issn=0027-8424 | volume=26 | issue=8 | pages=491–496 | doi=10.1073/pnas.26.8.491 | pmid=16588390 | pmc=1078216 | bibcode=1940PNAS...26..491B | url=http://authors.library.caltech.edu/8694/1/BATpnas40.pdf | doi-access=free }} some of them being even valid for complex z, e.g.

:(26)\qquad g_n(z) = \frac{\sin(\pi z)}{2\pi}\int _{-1}^1 t^{n-1} \Bigl(\frac{1+t}{1-t}\Bigr)^z dt

:(27)\qquad g_n(z) = \frac{\sin(\pi z)}{2\pi} \int_{-\infty}^{\infty} e^{uz}\frac{(\tanh \frac u2)^n}{\sinh u} du

:(32)\qquad g_n(z) = \frac1\pi\int _0^\pi \cot^z (\frac u2) \cos (\frac{\pi z}2) \cos (nu)du

:(33)\qquad g_n(z) = \frac1\pi\int _0^\pi \cot^z (\frac u2) \sin (\frac{\pi z}2) \sin (nu)du

:(34)\qquad g_n(z) = \frac1{2\pi}\int _0^{2\pi} (1+e^{it})^z (2+e^{it})^{n-1} e^{-int}dt.

=Closed forms of integral families=

There are several families of integrals with closed-form expressions in terms of zeta values where the coefficients of the Mittag-Leffler polynomials occur as coefficients. All those integrals can be written in a form containing either a factor \tan^{\pm n} or \tanh^{\pm n}, and the degree of the Mittag-Leffler polynomial varies with n. One way to work out those integrals is to obtain for them the corresponding recursion formulas as for the Mittag-Leffler polynomials using integration by parts.

1. For instance,{{citation | title=see at the end of this question on Mathoverflow | url=https://mathoverflow.net/questions/231964/how-to-prove-that-int-0-infty-frac-textarcsinhnxxmdx-is-a-rational}} define for n\geqslant m \geqslant 2

:I(n,m):= \int _0^1\dfrac{\text{artanh}^nx}{x^m}dx

= \int _0^1\log^{n/2}\Bigl(\dfrac{1+x }{1-x}\Bigr)\dfrac{dx}{x^m}

= \int _0^\infty z^n\dfrac{ \coth^{m-2}z }{\sinh^2z} dz.

These integrals have the closed form

:(1)\quad I(n,m)=\frac{n!}{2^{n-1}}\zeta^{n+1}~g_ {m-1}(\frac1{\zeta} )

in umbral notation, meaning that after expanding the polynomial in \zeta, each power \zeta^k has to be replaced by the zeta value \zeta(k). E.g. from

g_6(x)={\frac{1}{45}} (23x^2+20x^4+2x^6)\ we get

\ I(n,7)=\frac{n!}{2^{n-1}}\frac{23~\zeta(n-1)+20~\zeta(n-3)+2~\zeta(n-5)}{45}\ for n\geqslant 7.

2. Likewise take for n\geqslant m \geqslant 2

: J(n,m):=\int _1^\infty\dfrac{\text{arcoth}^nx}{x^m}dx =\int _1^\infty\log^{n/2}\Bigl(\dfrac{x+1}{x-1}\Bigr)\dfrac{dx}{x^m}

= \int _0^\infty z^n\dfrac{\tanh^{m-2}z }{\cosh^2z} dz.

In umbral notation, where after expanding, \eta^k has to be replaced by the Dirichlet eta function \eta(k):=\left(1-2^{1-k}\right)\zeta(k), those have the closed form

: (2)\quad J(n,m)=\frac{n!}{2^{n-1}} \eta^{n+1}~g_ {m-1}(\frac1{\eta} ).

3. The following{{citation | title=answer on math.stackexchange | url=https://math.stackexchange.com/a/2939452}} holds for n\geqslant m with the same umbral notation for \zeta and \eta, and completing by continuity \eta(1):=\ln 2.

:(3)\quad \int\limits_0^{\pi/2} \frac{x^n}{\tan^m x}dx = \cos\Bigl(\frac{ m}{2}\pi\Bigr)\frac{(\pi/2)^{n+1}}{n+1}

+\cos\Bigl(\frac{ m-n-1}{2}\pi\Bigr) \frac{n!~m}{2^{n}}\zeta^{n+2}g_m(\frac1{\zeta})

+\sum\limits_{v=0}^n \cos\Bigl(\frac{ m-v-1}{2}\pi\Bigr)\frac{n!~m~\pi^{n-v}}{(n-v)!~2^{n}} \eta^{n+2}g_m(\frac1{\eta}).

Note that for n\geqslant m \geqslant 2, this also yields a closed form for the integrals

: \int\limits_0^{\infty} \frac{\arctan^n x}{x^m} dx = \int\limits_0^{\pi/2} \frac{x^n}{\tan^m x} dx + \int\limits_0^{\pi/2} \frac{x^n}{\tan^{m-2} x} dx.

4. For n\geqslant m\geqslant 2, define{{citation | title=similar to this question on Mathoverflow | url=https://math.stackexchange.com/q/1582943 }} \quad K(n,m):=\int\limits_0^\infty\dfrac{\tanh^n(x)}{x^m}dx.

If n+m is even and we define h_k:= (-1)^{\frac{k-1}2} \frac{(k-1)!(2^k-1)\zeta(k)}{2^{k-1}\pi^{k-1}} , we have in umbral notation, i.e. replacing h^k by h_k,

: (4)\quad K(n,m):=\int\limits_0^\infty\dfrac{\tanh^n(x)}{x^m}dx =

\dfrac{n\cdot 2^{m-1}}{ (m-1)!}(-h)^{m-1} g_n(h).

Note that only odd zeta values (odd k) occur here (unless the denominators are cast as even zeta values), e.g.

:K(5,3)=-\frac{2}{3}(3h_3+10h_5+2h_7)=-7\frac{\zeta(3)}{\pi^2}+ 310 \frac{\zeta(5)}{\pi^4} -1905\frac{\zeta(7)}{\pi^6},

: K(6,2)=\frac{4}{15}(23h_3+20h_5+2h_7),\quad K(6,4)=\frac{4}{45}(23h_5+20h_7+2h_9).

5. If n+m is odd, the same integral is much more involved to evaluate, including the initial one \int\limits_0^\infty\dfrac{\tanh^3(x)}{x^2}dx. Yet it turns out that the pattern subsists if we define{{citation | title=method used in this answer on Mathoverflow | url=https://mathoverflow.net/a/271569}} s_k:=\eta'(-k)=2^{k+1}\zeta(-k)\ln2-(2^{k+1}-1)\zeta'(-k), equivalently s_k = \frac{\zeta(-k)}{\zeta'(-k)}\eta(-k)+\zeta(-k)\eta(1)-\eta(-k)\eta(1). Then K(n,m) has the following closed form in umbral notation, replacing s^k by s_k:

: (5)\quad K(n,m)=\int\limits_0^\infty\dfrac{\tanh^n(x)}{x^m}dx=\frac{n\cdot2^{m}}{(m-1)!}(-s)^{m-2}g_n(s), e.g.

:K(5,4)=\frac{8}{9}(3s_3+10s_5+2s_7), \quad K(6,3)=-\frac{8}{15}(23s_3+20s_5+2s_7),\quad K(6,5)=-\frac{8}{45}(23s_5+20s_7+2s_9).

Note that by virtue of the logarithmic derivative \frac{\zeta'}{\zeta}(s)+\frac{\zeta'}{\zeta}(1-s)=\log\pi-\frac{1}{2}\frac{\Gamma'}{\Gamma}\left(\frac{s}{2}\right)-\frac{1}{2}\frac{\Gamma'}{\Gamma}\left(\frac{1-s}{2}\right) of Riemann's functional equation, taken after applying Euler's reflection formula,or see formula (14) in https://mathworld.wolfram.com/RiemannZetaFunction.html these expressions in terms of the s_k can be written in terms of \frac{\zeta'(2j) }{\zeta(2j) }, e.g.

:K(5,4)=\frac{8}{9}(3s_3+10s_5+2s_7)=\frac 19\left\{ \frac{1643}{420}-\frac{16 }{315}\ln2+3\frac{\zeta'(4) }{\zeta(4) }-20\frac{\zeta'(6) }{\zeta(6) }+17\frac{\zeta'(8) }{\zeta(8) }\right\}.

6. For n, the same integral K(n,m) diverges because the integrand behaves like x^{n-m} for x\searrow 0. But the difference of two such integrals with corresponding degree differences is well-defined and exhibits very similar patterns, e.g.

: (6)\quad K(n-1,n)-K(n,n+1)=\int\limits_0^\infty\left(\dfrac{\tanh^{n-1}(x)}{x^{n}}-\dfrac{\tanh^{n}(x)}{x^{n+1}}\right)dx= -\frac 1n + \frac{ (n+1)\cdot2^{n}}{(n-1)!}s^{n-2}g_n(s) .

See also

References

{{Reflist}}

  • {{Citation | last1=Bateman | first1=H. | title=The polynomial of Mittag-Leffler | jstor=86958 | mr=0002381 | year=1940 | journal=Proceedings of the National Academy of Sciences of the United States of America | issn=0027-8424 | volume=26 | issue=8 | pages=491–496 | doi=10.1073/pnas.26.8.491| pmid=16588390 | pmc=1078216 | bibcode=1940PNAS...26..491B | url=http://authors.library.caltech.edu/8694/1/BATpnas40.pdf | doi-access=free }}
  • {{Citation | last1=Mittag-Leffler | first1=G. | title=Sur la représentasion analytique des intégrales et des invariants d'une équation différentielle linéaire et homogène | language=French | doi=10.1007/BF02392600 | jfm=23.0327.01 | year=1891 | journal=Acta Mathematica | issn=0001-5962 | volume=XV | pages=1–32| doi-access=free }}
  • {{Citation | last1=Stankovic | first1=Miomir S. | last2=Marinkovic | first2=Sladjana D. | last3=Rajkovic | first3=Predrag M. | title=Deformed Mittag–Leffler Polynomials | language=English | year=2010 | arxiv=1007.3612 }}

Category:Polynomials