Mittag-Leffler polynomials
{{Short description|Mathematical functions}}
{{distinguish|Mittag-Leffler function}}
In mathematics, the Mittag-Leffler polynomials are the polynomials gn(x) or Mn(x) studied by {{harvs|txt|last=Mittag-Leffler|year=1891|authorlink=Gösta Mittag-Leffler}}.
Mn(x) is a special case of the Meixner polynomial Mn(x;b,c) at b = 0, c = -1.
Definition and examples
===Generating functions===
The Mittag-Leffler polynomials are defined respectively by the generating functions
: and
:
They also have the bivariate generating function{{citation | title=see the formula section of OEIS A142978| url=https://oeis.org/A142978}}
:
=Examples=
The first few polynomials are given in the following table. The coefficients of the numerators of the can be found in the OEIS,{{citation | title=see OEIS A064984| url= https://oeis.org/A064984}} though without any references, and the coefficients of the are in the OEIS{{citation | title=see OEIS A137513| url= https://oeis.org/A137513}} as well.
:
class="wikitable"
!n !! gn(x) !! Mn(x) | ||
0 | ||
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 |
Properties
The polynomials are related by and we have for . Also .
=Explicit formulas=
Explicit formulas are
:
:
:
(the last one immediately shows , a kind of reflection formula), and
:, which can be also written as
:, where denotes the falling factorial.
In terms of the Gaussian hypergeometric function, we have{{cite journal | author=Özmen, Nejla | author2=Nihal, Yılmaz | name-list-style=amp | title=On The Mittag-Leffler Polynomials and Deformed Mittag-Leffler Polynomials | language=English | year=2019 | url=https://dergipark.org.tr/en/download/article-file/843805}}
:
=Reflection formula=
As stated above, for , we have the reflection formula .
=Recursion formulas=
The polynomials can be defined recursively by
:, starting with and .
Another recursion formula, which produces an odd one from the preceding even ones and vice versa, is
:, again starting with .
As for the , we have several different recursion formulas:
:
:
:
:
Concerning recursion formula (3), the polynomial is the unique polynomial solution of the difference equation , normalized so that .{{citation | title=see the comment section of OEIS A142983 | url=https://oeis.org/A142983}} Further note that (2) and (3) are dual to each other in the sense that for , we can apply the reflection formula to one of the identities and then swap and to obtain the other one. (As the are polynomials, the validity extends from natural to all real values of .)
===Initial values===
The table of the initial values of (these values are also called the "figurate numbers for the n-dimensional cross polytopes" in the OEIS{{citation | title=see OEIS A142978| url=https://oeis.org/A142978/table}}) may illustrate the recursion formula (1), which can be taken to mean that each entry is the sum of the three neighboring entries: to its left, above and above left, e.g. . It also illustrates the reflection formula with respect to the main diagonal, e.g. .
:
class="wikitable"
!{{diagonal split header|m |n}} !! 1!! 2 !! 3 !! 4 !! 5 !! 6 !! 7 !! 8 !! 9 !! 10 |
1
| style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 || style="text-align: right;" |1 |
---|
2
| style="text-align: right;" |2 || style="text-align: right;" |4 || style="text-align: right;" |6 || style="text-align: right;" |8 || style="text-align: right;" |10 || style="text-align: right;" |12 || style="text-align: right;" |14 || style="text-align: right;" |16 || style="text-align: right;" |18 || style="text-align: right;" | |
3
| style="text-align: right;" |3 || style="text-align: right;" |9 || style="text-align: right;" |19 || style="text-align: right;" |33 || style="text-align: right;" |51 || style="text-align: right;" |73 || style="text-align: right;" |99 || style="text-align: right;" |129 || style="text-align: right;" | || style="text-align: right;" | |
4
| style="text-align: right;" |4 || style="text-align: right;" |16 || style="text-align: right;" |44 || style="text-align: right;" |96 || style="text-align: right;" |180 || style="text-align: right;" |304 || style="text-align: right;" |476 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | |
5
| style="text-align: right;" |5 || style="text-align: right;" |25 || style="text-align: right;" |85 || style="text-align: right;" |225 || style="text-align: right;" |501 || style="text-align: right;" |985 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | |
6
| style="text-align: right;" |6 || style="text-align: right;" |36 || style="text-align: right;" |146 || style="text-align: right;" |456 || style="text-align: right;" |1182 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | |
7
| style="text-align: right;" |7 || style="text-align: right;" |49 || style="text-align: right;" |231 || style="text-align: right;" |833 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | |
8
| style="text-align: right;" |8 || style="text-align: right;" |64 || style="text-align: right;" |344 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | |
9
| style="text-align: right;" |9 || style="text-align: right;" |81 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | |
10
| style="text-align: right;" | 10 || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || style="text-align: right;" | || |
=Orthogonality relations=
For the following orthogonality relation holds:{{cite journal | author=Stankovic, Miomir S. | author2=Marinkovic, Sladjana D. | author3=Rajkovic, Predrag M. | name-list-style=amp | title=Deformed Mittag–Leffler Polynomials | language=English | year=2010 | arxiv=1007.3612 }}
:
(Note that this is not a complex integral. As each is an even or an odd polynomial, the imaginary arguments just produce alternating signs for their coefficients. Moreover, if and have different parity, the integral vanishes trivially.)
===Binomial identity===
Being a Sheffer sequence of binomial type, the Mittag-Leffler polynomials also satisfy the binomial identity{{citation | title=Mathworld entry "Mittag-Leffler Polynomial" | url=https://mathworld.wolfram.com/Mittag-LefflerPolynomial.html}}
:.
===Integral representations===
Based on the representation as a hypergeometric function, there are several ways of representing for directly as integrals,{{cite journal | last1=Bateman | first1=H. | title=The polynomial of Mittag-Leffler | jstor=86958 | mr=0002381 | year=1940 | journal=Proceedings of the National Academy of Sciences of the United States of America | issn=0027-8424 | volume=26 | issue=8 | pages=491–496 | doi=10.1073/pnas.26.8.491 | pmid=16588390 | pmc=1078216 | bibcode=1940PNAS...26..491B | url=http://authors.library.caltech.edu/8694/1/BATpnas40.pdf | doi-access=free }} some of them being even valid for complex , e.g.
:
:
:
:
:.
=Closed forms of integral families=
There are several families of integrals with closed-form expressions in terms of zeta values where the coefficients of the Mittag-Leffler polynomials occur as coefficients. All those integrals can be written in a form containing either a factor or , and the degree of the Mittag-Leffler polynomial varies with . One way to work out those integrals is to obtain for them the corresponding recursion formulas as for the Mittag-Leffler polynomials using integration by parts.
1. For instance,{{citation | title=see at the end of this question on Mathoverflow | url=https://mathoverflow.net/questions/231964/how-to-prove-that-int-0-infty-frac-textarcsinhnxxmdx-is-a-rational}} define for
:
= \int _0^1\log^{n/2}\Bigl(\dfrac{1+x }{1-x}\Bigr)\dfrac{dx}{x^m}
= \int _0^\infty z^n\dfrac{ \coth^{m-2}z }{\sinh^2z} dz.
These integrals have the closed form
:
in umbral notation, meaning that after expanding the polynomial in , each power has to be replaced by the zeta value . E.g. from
we get
for .
2. Likewise take for
:
= \int _0^\infty z^n\dfrac{\tanh^{m-2}z }{\cosh^2z} dz.
In umbral notation, where after expanding, has to be replaced by the Dirichlet eta function , those have the closed form
:.
3. The following{{citation | title=answer on math.stackexchange | url=https://math.stackexchange.com/a/2939452}} holds for with the same umbral notation for and , and completing by continuity .
:
+\cos\Bigl(\frac{ m-n-1}{2}\pi\Bigr) \frac{n!~m}{2^{n}}\zeta^{n+2}g_m(\frac1{\zeta})
+\sum\limits_{v=0}^n \cos\Bigl(\frac{ m-v-1}{2}\pi\Bigr)\frac{n!~m~\pi^{n-v}}{(n-v)!~2^{n}} \eta^{n+2}g_m(\frac1{\eta}).
Note that for , this also yields a closed form for the integrals
:
4. For , define{{citation | title=similar to this question on Mathoverflow | url=https://math.stackexchange.com/q/1582943 }} .
If is even and we define , we have in umbral notation, i.e. replacing by ,
:
\dfrac{n\cdot 2^{m-1}}{ (m-1)!}(-h)^{m-1} g_n(h).
Note that only odd zeta values (odd ) occur here (unless the denominators are cast as even zeta values), e.g.
:
:
5. If is odd, the same integral is much more involved to evaluate, including the initial one . Yet it turns out that the pattern subsists if we define{{citation | title=method used in this answer on Mathoverflow | url=https://mathoverflow.net/a/271569}} , equivalently . Then has the following closed form in umbral notation, replacing by :
:, e.g.
:
Note that by virtue of the logarithmic derivative of Riemann's functional equation, taken after applying Euler's reflection formula,or see formula (14) in https://mathworld.wolfram.com/RiemannZetaFunction.html these expressions in terms of the can be written in terms of , e.g.
:
6. For
:
See also
References
{{Reflist}}
- {{Citation | last1=Bateman | first1=H. | title=The polynomial of Mittag-Leffler | jstor=86958 | mr=0002381 | year=1940 | journal=Proceedings of the National Academy of Sciences of the United States of America | issn=0027-8424 | volume=26 | issue=8 | pages=491–496 | doi=10.1073/pnas.26.8.491| pmid=16588390 | pmc=1078216 | bibcode=1940PNAS...26..491B | url=http://authors.library.caltech.edu/8694/1/BATpnas40.pdf | doi-access=free }}
- {{Citation | last1=Mittag-Leffler | first1=G. | title=Sur la représentasion analytique des intégrales et des invariants d'une équation différentielle linéaire et homogène | language=French | doi=10.1007/BF02392600 | jfm=23.0327.01 | year=1891 | journal=Acta Mathematica | issn=0001-5962 | volume=XV | pages=1–32| doi-access=free }}
- {{Citation | last1=Stankovic | first1=Miomir S. | last2=Marinkovic | first2=Sladjana D. | last3=Rajkovic | first3=Predrag M. | title=Deformed Mittag–Leffler Polynomials | language=English | year=2010 | arxiv=1007.3612 }}