NC10 phylum
{{Short description|Phylum of bacteria}}
{{Taxobox
|name = NC10 phylum
|image = 41598 2016 Article BFsrep32241 Fig4k HTML.png
|image_caption = CLSM image of a microcolony of NC10 bacteria (Ca. Methylomirabilis sinica)
|domain = Bacteria
|superphylum =
|phylum = "Methylomirabilota"
|classis = "Methylomirabilia"
|subdivision_ranks = Orders
|subdivision =
|synonyms =
- "Rokubacteria" Hug et al. 2016
}}
NC10 is a bacterial phylum with candidate status, meaning its members remain uncultured to date. The difficulty in producing lab cultures may be linked to low growth rates and other limiting growth factors.{{Cite journal|last1=He|first1=Zhanfei|last2=Cai|first2=Chaoyang|last3=Wang|first3=Jiaqi|last4=Xu|first4=Xinhua|last5=Zheng|first5=Ping|last6=Jetten|first6=Mike S. M.|last7=Hu|first7=Baolan|date=2016-09-01|title=A novel denitrifying methanotroph of the NC10 phylum and its microcolony|journal=Scientific Reports|language=en|volume=6|issue=1|page=32241|doi=10.1038/srep32241|pmid=27582299|pmc=5007514|bibcode=2016NatSR...632241H|issn=2045-2322}}{{Cite journal|last1=Raghoebarsing|first1=Ashna A.|last2=Pol|first2=Arjan|last3=van de Pas-Schoonen|first3=Katinka T.|last4=Smolders|first4=Alfons J. P.|last5=Ettwig|first5=Katharina F.|last6=Rijpstra|first6=W. Irene C.|last7=Schouten|first7=Stefan|last8=Damsté|first8=Jaap S. Sinninghe|last9=Op den Camp|first9=Huub J. M.|last10=Jetten|first10=Mike S. M.|last11=Strous|first11=Marc|date=April 2006|title=A microbial consortium couples anaerobic methane oxidation to denitrification|url=https://www.nature.com/articles/nature04617|journal=Nature|language=en|volume=440|issue=7086|pages=918–921|doi=10.1038/nature04617|pmid=16612380|bibcode=2006Natur.440..918R|hdl=1874/22552|s2cid=4413069|issn=1476-4687|hdl-access=free}}{{Cite journal|last1=Ettwig|first1=Katharina F.|last2=Shima|first2=Seigo|last3=Pas‐Schoonen|first3=Katinka T. Van De|last4=Kahnt|first4=Jörg|last5=Medema|first5=Marnix H.|last6=Camp|first6=Huub J. M. Op Den|last7=Jetten|first7=Mike S. M.|last8=Strous|first8=Marc|date=2008|title=Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea|journal=Environmental Microbiology|language=en|volume=10|issue=11|pages=3164–3173|doi=10.1111/j.1462-2920.2008.01724.x|pmid=18721142|issn=1462-2920|hdl=2066/72144|hdl-access=free}}{{Cite journal|last1=Wu|first1=Ming L.|last2=Ettwig|first2=Katharina F.|last3=Jetten|first3=Mike S. M.|last4=Strous|first4=Marc|last5=Keltjens|first5=Jan T.|last6=Niftrik|first6=Laura van|date=2011-02-01|title=A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'|url=https://portlandpress.com/biochemsoctrans/article/39/1/243/84969/A-new-intra-aerobic-metabolism-in-the-nitrite|journal=Biochemical Society Transactions|language=en|volume=39|issue=1|pages=243–248|doi=10.1042/BST0390243|pmid=21265781|issn=0300-5127|hdl=2066/91512|hdl-access=free}}
Methylomirabilis oxyfera, a member of the NC10 phylum, is the first organism discovered to couple methane oxidation to the reduction of nitrite to dinitrogen (N2).{{Cite journal|last1=Ettwig|first1=Katharina F.|last2=Butler|first2=Margaret K.|last3=Le Paslier|first3=Denis|last4=Pelletier|first4=Eric|last5=Mangenot|first5=Sophie|last6=Kuypers|first6=Marcel M. M.|last7=Schreiber|first7=Frank|last8=Dutilh|first8=Bas E.|last9=Zedelius|first9=Johannes|last10=de Beer|first10=Dirk|last11=Gloerich|first11=Jolein|date=March 2010|title=Nitrite-driven anaerobic methane oxidation by oxygenic bacteria|url=https://www.nature.com/articles/nature08883|journal=Nature|language=en|volume=464|issue=7288|pages=543–548|doi=10.1038/nature08883|pmid=20336137|bibcode=2010Natur.464..543E|s2cid=205220000|issn=1476-4687|hdl=2066/84284|hdl-access=free}} This is significant for several reasons. First, there are only three other biological pathways known to produce oxygen (photosynthesis, chlorate respiration, and the detoxification of reactive oxygen species). Second, anaerobic methane oxidation (AMO) coupled to nitrite reduction links the global carbon and nitrogen cycles, and thus denitrifying methanotrophs in the NC10 phylum may influence methane content in the atmosphere. Third, this finding opens the possibility that oxygen was available in the atmosphere prior to the evolution of oxygenic photosynthesis and the Great Oxidation Event, which challenges certain aspects of modern theories regarding the evolution of early life on Earth.
The NC10 phylum was first proposed in 2003 on the basis of highly divergent 16S rRNA gene sequences from aquatic microbial formations in flooded caves (Nullarbor caves, Australia).{{Cite journal|last1=Rappé|first1=Michael S.|last2=Giovannoni|first2=Stephen J.|date=October 2003|title=The Uncultured Microbial Majority|journal=Annual Review of Microbiology|language=en|volume=57|issue=1|pages=369–394|doi=10.1146/annurev.micro.57.030502.090759|pmid=14527284|issn=0066-4227}} The first genome insights for the phylum were published in 2010. Members of the NC10 phylum have been detected in environments including the Brunssummerheide peatlands (Limburg, Netherlands),{{Cite journal|last1=Zhu|first1=Baoli|last2=van Dijk|first2=Gijs|last3=Fritz|first3=Christian|last4=Smolders|first4=Alfons J. P.|last5=Pol|first5=Arjan|last6=Jetten|first6=Mike S. M.|last7=Ettwig|first7=Katharina F.|date=2012-10-05|title=Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria|journal=Applied and Environmental Microbiology|volume=78|issue=24|pages=8657–8665|doi=10.1128/aem.02102-12|pmid=23042166|pmc=3502929|bibcode=2012ApEnM..78.8657Z|issn=0099-2240|doi-access=free}} the deep stratified Lake Zug (Central Switzerland),{{Cite journal|last1=Graf|first1=Jon S.|last2=Mayr|first2=Magdalena J.|last3=Marchant|first3=Hannah K.|last4=Tienken|first4=Daniela|last5=Hach|first5=Philipp F.|last6=Brand|first6=Andreas|last7=Schubert|first7=Carsten J.|last8=Kuypers|first8=Marcel M. M.|last9=Milucka|first9=Jana|date=2018|title=Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake|journal=Environmental Microbiology|language=en|volume=20|issue=7|pages=2598–2614|doi=10.1111/1462-2920.14285|pmid=29806730|issn=1462-2920|doi-access=free|hdl=21.11116/0000-0003-B834-3|hdl-access=free}} and a paddy field with long-term fertilization (Hangzhou, China){{Cite journal|last1=He|first1=Zhanfei|last2=Cai|first2=Chen|last3=Shen|first3=Lidong|last4=Lou|first4=Liping|last5=Zheng|first5=Ping|last6=Xu|first6=Xinhua|last7=Hu|first7=Baolan|date=2015-01-01|title=Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria|journal=Applied Microbiology and Biotechnology|language=en|volume=99|issue=2|pages=939–946|doi=10.1007/s00253-014-6033-8|pmid=25186148|s2cid=33695086|issn=1432-0614}}
NC10 species proposed to date include Methylomirabilis oxyfera and Methylomirabilis lanthanidiphila{{Cite journal|last1=Versantvoort|first1=Wouter|last2=Guerrero-Cruz|first2=Simon|last3=Speth|first3=Daan R.|last4=Frank|first4=Jeroen|last5=Gambelli|first5=Lavinia|last6=Cremers|first6=Geert|last7=van Alen|first7=Theo|last8=Jetten|first8=Mike S. M.|last9=Kartal|first9=Boran|last10=Op den Camp|first10=Huub J. M.|last11=Reimann|first11=Joachim|date=2018|title=Comparative Genomics of Candidatus Methylomirabilis Species and Description of Ca. Methylomirabilis Lanthanidiphila|journal=Frontiers in Microbiology|language=English|volume=9|page=1672|doi=10.3389/fmicb.2018.01672|pmid=30140258|pmc=6094997|issn=1664-302X|doi-access=free}}
Taxonomy
{{cladogram|title=120 marker proteins based GTDB 07-RS207{{cite web |title=GTDB release 07-RS207 |url=https://gtdb.ecogenomic.org/about#4%7C |website=Genome Taxonomy Database|access-date=20 June 2022}}{{cite web |title=bac120_r207.sp_labels |url=https://data.gtdb.ecogenomic.org/releases/release207/207.0/auxillary_files/bac120_r207.sp_labels.tree |website=Genome Taxonomy Database|access-date=20 June 2022}}{{cite web |title=Taxon History |url=https://gtdb.ecogenomic.org/taxon_history/ |website=Genome Taxonomy Database|access-date=20 June 2022}}|
{{Clade | style=font-size:90%;line-height:80%;width:400px
|1={{clade
|1="Rokubacteriales"
|label2="Ca. Methylomirabilis"
|2={{clade
|1="Ca. M. limnetica"
|2={{clade
|1="Ca. M. lanthanidiphila"
|2="Ca. M. oxygeniifera"
}}
}}
}}
}}
}}
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN){{cite web | author=J.P. Euzéby | url=https://lpsn.dsmz.de/domain/bacteria | title=Bacteria | publisher=List of Prokaryotic names with Standing in Nomenclature (LPSN)| access-date=2021-06-27 }} and National Center for Biotechnology Information (NCBI).{{cite web |author = Sayers|display-authors = etal| url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2 |title=Bacteria |accessdate=2021-03-20 |publisher=National Center for Biotechnology Information (NCBI) taxonomy database}} However many taxonomic names are taken from the Genome Taxonomy Database release 06-RS202.{{cite web |title=GTDB release 06-RS202 |url=https://gtdb.ecogenomic.org/about#4%7C |website=Genome Taxonomy Database}}{{cite journal|last1=Parks|first1=DH|last2=Chuvochina|first2=M|last3=Waite|first3=DW|last4=Rinke|first4=C|last5=Skarshewski|first5=A|last6=Chaumeil|first6=PA|last7=Hugenholtz|first7=P|date=November 2018|title=A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life.|journal=Nature Biotechnology|volume=36|issue=10|pages=996–1004|biorxiv=10.1101/256800|doi=10.1038/nbt.4229|pmid=30148503|s2cid=52093100}}{{cite journal|last1=Parks|first1=DH|last2=Chuvochina|first2=M|last3=Chaumeil|first3=PA|last4=Rinke|first4=C|last5=Mussig|first5=AJ|last6=Hugenholtz|first6=P|date=September 2020|title=A complete domain-to-species taxonomy for Bacteria and Archaea.|url=https://www.researchgate.net/publication/340954053|journal=Nature Biotechnology|volume=38|issue=9|pages=1079–1086|biorxiv=10.1101/771964|doi=10.1038/s41587-020-0501-8|pmid=32341564|s2cid=216560589}}{{cite journal|last1=Chaumeil|first1=PA|last2=Mussig|first2=AJ|last3=Hugenholtz|first3=P|last4=Parks|first4=DH|date=15 November 2019|title=GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database.|journal=Bioinformatics|volume=36 |issue=6 |pages=1925–1927 |doi=10.1093/bioinformatics/btz848|pmc=7703759|pmid=31730192|doi-access=free}}
- Class "Methylomirabilia"
- Order "Rokubacteriales" (CSP1-6)
- Order "Methylomirabilales" Cabrol et al. 2020 (NC10)
- Family "Methylomirabilaceae"
- Genus "Candidatus Methylomirabilis" Ettwig et al. 2010
- "Ca. M. lanthanidiphila" Versantvoort et al. 2018
- "Ca. M. limnetica" Graf et al. 2018
- "Ca. M. oxygeniifera" corrig. Ettwig et al. 2010
- "Ca. M. sinica" He et al. 2016
See also
References
{{Reflist}}
{{Bacteria classification|state=collapsed}}
{{Taxonbar|from=Q96394625}}