N = 2 superconformal algebra
{{Short description|2D supersymmetric generalization to the conformal algebra}}
{{DISPLAYTITLE:N = 2 superconformal algebra}}
In mathematical physics, the 2D N = 2 superconformal algebra is an infinite-dimensional Lie superalgebra, related to supersymmetry, that occurs in string theory and two-dimensional conformal field theory. It has important applications in mirror symmetry. It was introduced by {{harvs|txt | last1=Ademollo | first1=M. | last2=Brink | first2=L. | last3=D'Adda | first3=A. | last4=D'Auria | first4=R. | last5=Napolitano | first5=E. | last6=Sciuto | first6=S. | last7=Giudice | first7=E. Del | last8=Vecchia | first8=P. Di | last9=Ferrara | first9=S. | last10=Gliozzi | first10=F. | last11=Musto | first11=R. | last12=Pettorino | first12=R. | title=Supersymmetric strings and colour confinement | doi=10.1016/0370-2693(76)90061-7 | year=1976 | journal=Physics Letters B | volume=62 | issue=1 | pages=105–110}} as a gauge algebra of the U(1) fermionic string.
Definition
There are two slightly different ways to describe the N = 2 superconformal algebra, called the N = 2 Ramond algebra and the N = 2 Neveu–Schwarz algebra, which are isomorphic (see below) but differ in the choice of standard basis.
The N = 2 superconformal algebra is the Lie superalgebra with basis of even elements c, Ln, Jn, for n an integer, and odd elements G{{su|p=+|b=r}}, G{{su|p=−|b=r}}, where (for the Ramond basis) or (for the Neveu–Schwarz basis) defined by the following relations:{{harvnb|Green|Schwarz|Witten|1988a|pp=240–241}}
::c is in the center
::
::
::
::
::
::
::
If in these relations, this yields the
N = 2 Ramond algebra; while if are half-integers, it gives the N = 2 Neveu–Schwarz algebra. The operators generate a Lie subalgebra isomorphic to the Virasoro algebra. Together with the operators , they generate a Lie superalgebra isomorphic to the super Virasoro algebra,
giving the Ramond algebra if are integers and the Neveu–Schwarz algebra otherwise. When represented as operators on a complex inner product space, is taken to act as multiplication by a real scalar, denoted by the same letter and called the central charge, and the adjoint structure is as follows:
:
Properties
- The N = 2 Ramond and Neveu–Schwarz algebras are isomorphic by the spectral shift isomorphism of {{harvtxt|Schwimmer|Seiberg|1987}}: with inverse:
- In the N = 2 Ramond algebra, the zero mode operators , , and the constants form a five-dimensional Lie superalgebra. They satisfy the same relations as the fundamental operators in Kähler geometry, with corresponding to the Laplacian, the degree operator, and the and operators.
- Even integer powers of the spectral shift give automorphisms of the N = 2 superconformal algebras, called spectral shift automorphisms. Another automorphism , of period two, is given by In terms of Kähler operators, corresponds to conjugating the complex structure. Since , the automorphisms and generate a group of automorphisms of the N = 2 superconformal algebra isomorphic to the infinite dihedral group .
- Twisted operators were introduced by {{harvtxt|Eguchi|Yang|1990}} and satisfy: so that these operators satisfy the Virasoro relation with central charge 0. The constant still appears in the relations for and the modified relations
Constructions
=Free field construction=
{{harvs|last1=Green|last2=Schwarz|last3=Witten|year=1988a|year2=1988b|txt}} give a construction using two commuting real bosonic fields ,
:
\,\,\,\, a_n^*=a_{-n},\,\,\,\, b_n^*=b_{-n}
and a complex fermionic field
:
is defined to the sum of the Virasoro operators naturally associated with each of the three systems
:
where normal ordering has been used for bosons and fermions.
The current operator is defined by the standard construction from fermions
:
and the two supersymmetric operators by
:
This yields an N = 2 Neveu–Schwarz algebra with c = 3.
=SU(2) supersymmetric coset construction=
{{harvtxt|Di Vecchia|Petersen|Yu|Zheng|1986}} gave a coset construction of the N = 2 superconformal algebras, generalizing the coset constructions of {{harvtxt|Goddard|Kent|Olive|1986}} for the discrete series representations of the Virasoro and super Virasoro algebra. Given a representation of the affine Kac–Moody algebra of SU(2) at level with basis satisfying
:
:
:
:
the supersymmetric generators are defined by
:
This yields the N=2 superconformal algebra with
:
The algebra commutes with the bosonic operators
:
The space of physical states consists of eigenvectors of simultaneously annihilated by the 's for positive and the supercharge operator
: (Neveu–Schwarz)
: (Ramond)
The supercharge operator commutes with the action of the affine Weyl group and the physical states lie in a single orbit of this group, a fact which implies the Weyl-Kac character formula.{{harvnb|Wassermann|2010}}
=Kazama–Suzuki supersymmetric coset construction=
{{harvtxt|Kazama|Suzuki|1989}} generalized the SU(2) coset construction to any pair consisting of a simple compact Lie group and a closed subgroup of maximal rank, i.e. containing a maximal torus of , with the additional condition that the dimension of the centre of is non-zero. In this case the compact Hermitian symmetric space is a Kähler manifold, for example when . The physical states lie in a single orbit of the affine Weyl group, which again implies the Weyl–Kac character formula for the affine Kac–Moody algebra of .
See also
Notes
{{reflist}}
References
- {{Citation | last1=Ademollo | first1=M. | last2=Brink | first2=L. | last3=D'Adda | first3=A. | last4=D'Auria | first4=R. | last5=Napolitano | first5=E. | last6=Sciuto | first6=S. | last7=Giudice | first7=E. Del | last8=Vecchia | first8=P. Di | last9=Ferrara | first9=S. | last10=Gliozzi | first10=F. | last11=Musto | first11=R. | last12=Pettorino | first12=R. | title=Supersymmetric strings and colour confinement | doi=10.1016/0370-2693(76)90061-7 | year=1976 | journal=Physics Letters B | volume=62 | issue=1 | pages=105–110|bibcode = 1976PhLB...62..105A | url=https://cds.cern.ch/record/438898 }}
- {{citation|first1=W.|last1=Boucher|first2=D|last2=Friedan|authorlink2=Daniel Friedan|first3=A.|last3=Kent|title=Determinant formulae and unitarity for the N = 2 superconformal algebras in two dimensions or exact results on string compactification|journal=Phys. Lett. B|volume=172|issue=3–4|year=1986|pages=316–322| doi = 10.1016/0370-2693(86)90260-1 |bibcode = 1986PhLB..172..316B }}
- {{citation|last1=Di Vecchia|first1= P.|last2 =Petersen|first2=J. L.|last3=Yu|first3= M.|last4=Zheng|first4= H. B.|title=Explicit construction of unitary representations of the N = 2 superconformal algebra|journal=Phys. Lett. B |volume=174 |issue= 3|year=1986|pages=280–284|doi=10.1016/0370-2693(86)91099-3|bibcode = 1986PhLB..174..280D }}
- {{citation|last1=Eguchi|first1=Tohru|last2= Yang|first2=Sung-Kil|title=N = 2 superconformal models as topological field theories|
journal=Mod. Phys. Lett. A|volume= 5 |year=1990|issue=21|pages=1693–1701|doi=10.1142/S0217732390001943|bibcode=1990MPLA....5.1693E }}
- {{citation|first1=P.|last1= Goddard|authorlink=Peter Goddard (physicist)|first2= A.|last2= Kent|first3=D.|last3= Olive|authorlink3=David Olive|url =http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104114626 |title=Unitary representations of the Virasoro and super-Virasoro algebras|journal= Comm. Math. Phys. |volume= 103|issue= 1|year=1986|pages=105–119|doi=10.1007/bf01464283|bibcode = 1986CMaPh.103..105G |s2cid= 91181508}}
- {{citation|first1=Michael B.|last1=Green|authorlink=Michael B. Green|first2=John H.|last2=Schwarz|authorlink2=John Henry Schwarz|first3=Edward|last3=Witten|
authorlink3=Edward Witten|title=Superstring theory, Volume 1: Introduction|publisher=Cambridge University Press|year=1988a|isbn=0-521-35752-7}}
- {{citation|first1=Michael B.|last1=Green|authorlink=Michael B. Green|first2=John H.|last2=Schwarz|authorlink2=John Henry Schwarz|first3=Edward|last3=Witten|
authorlink3=Edward Witten|title=Superstring theory, Volume 2: Loop amplitudes, anomalies and phenomenology|publisher=Cambridge University Press|year=1988b|
isbn=0-521-35753-5|bibcode=1987cup..bookR....G}}
- {{citation|last1=Kazama|first1= Yoichi|last2= Suzuki|first2= Hisao|title=New N = 2 superconformal field theories and superstring compactification|journal=Nuclear Physics B |volume=321 |issue= 1|year=1989|pages= 232–268|doi=10.1016/0550-3213(89)90250-2|bibcode = 1989NuPhB.321..232K }}
- {{citation|last1=Schwimmer|first1= A.|last2= Seiberg|first2= N.|authorlink2=Nathan Seiberg|title=Comments on the N = 2, 3, 4 superconformal algebras in two dimensions|journal=Phys. Lett. B |volume=184|issue= 2–3|year=1987|pages=191–196|bibcode = 1987PhLB..184..191S |doi = 10.1016/0370-2693(87)90566-1 }}
- {{citation|first=Claire|last=Voisin|authorlink=Claire Voisin|title=Mirror symmetry|series=SMF/AMS texts and monographs|volume=1|year=1999|publisher=American Mathematical Society|isbn=0-8218-1947-X}}
- {{cite news | last1=Wassermann | first1=A. J.|authorlink1=Antony Wassermann| title=Lecture notes on Kac-Moody and Virasoro algebras | orig-year=1998 | eprint=1004.1287 | year=2010 }}
- {{citation|title=Introduction to supersymmetry and supergravity|first=Peter C.|last=West|edition=2nd|publisher=World Scientific|year=1990|isbn=981-02-0099-4|pages=337–8}}
{{DEFAULTSORT:N 2 Superconformal Algebra}}
Category:Conformal field theory