N = 2 superconformal algebra

{{Short description|2D supersymmetric generalization to the conformal algebra}}

{{DISPLAYTITLE:N = 2 superconformal algebra}}

In mathematical physics, the 2D N = 2 superconformal algebra is an infinite-dimensional Lie superalgebra, related to supersymmetry, that occurs in string theory and two-dimensional conformal field theory. It has important applications in mirror symmetry. It was introduced by {{harvs|txt | last1=Ademollo | first1=M. | last2=Brink | first2=L. | last3=D'Adda | first3=A. | last4=D'Auria | first4=R. | last5=Napolitano | first5=E. | last6=Sciuto | first6=S. | last7=Giudice | first7=E. Del | last8=Vecchia | first8=P. Di | last9=Ferrara | first9=S. | last10=Gliozzi | first10=F. | last11=Musto | first11=R. | last12=Pettorino | first12=R. | title=Supersymmetric strings and colour confinement | doi=10.1016/0370-2693(76)90061-7 | year=1976 | journal=Physics Letters B | volume=62 | issue=1 | pages=105–110}} as a gauge algebra of the U(1) fermionic string.

Definition

There are two slightly different ways to describe the N = 2 superconformal algebra, called the N = 2 Ramond algebra and the N = 2 Neveu–Schwarz algebra, which are isomorphic (see below) but differ in the choice of standard basis.

The N = 2 superconformal algebra is the Lie superalgebra with basis of even elements c, Ln, Jn, for n an integer, and odd elements G{{su|p=+|b=r}}, G{{su|p=−|b=r}}, where r\in {\mathbb Z} (for the Ramond basis) or r\in {1\over 2}+{\mathbb Z} (for the Neveu–Schwarz basis) defined by the following relations:{{harvnb|Green|Schwarz|Witten|1988a|pp=240–241}}

::c is in the center

::[L_m,L_n] = \left(m-n\right) L_{m+n} + {c\over 12} \left(m^3-m\right) \delta_{m+n,0}

::[L_m,\,J_n]=-nJ_{m+n}

::[J_m,J_n] = {c\over 3} m\delta_{m+n,0}

::\{G_r^+,G_s^-\} = L_{r+s} + {1\over 2} \left(r-s\right) J_{r+s} + {c\over 6} \left(r^2-{1\over 4}\right) \delta_{r+s,0}

::\{G_r^+,G_s^+\} = 0 = \{G_r^-,G_s^-\}

::[L_m,G_r^{\pm}] = \left( {m\over 2}-r \right) G^\pm_{r+m}

::[J_m,G_r^\pm]= \pm G_{m+r}^\pm

If r,s\in {\mathbb Z} in these relations, this yields the

N = 2 Ramond algebra; while if r,s\in {1\over 2}+{\mathbb Z} are half-integers, it gives the N = 2 Neveu–Schwarz algebra. The operators L_n generate a Lie subalgebra isomorphic to the Virasoro algebra. Together with the operators G_r=G_r^+ + G_r^-, they generate a Lie superalgebra isomorphic to the super Virasoro algebra,

giving the Ramond algebra if r,s are integers and the Neveu–Schwarz algebra otherwise. When represented as operators on a complex inner product space, c is taken to act as multiplication by a real scalar, denoted by the same letter and called the central charge, and the adjoint structure is as follows:

:{L_n^*=L_{-n}, \,\, J_m^*=J_{-m}, \,\,(G_r^\pm)^*=G_{-r}^\mp, \,\,c^*=c}

Properties

  • The N = 2 Ramond and Neveu–Schwarz algebras are isomorphic by the spectral shift isomorphism \alpha of {{harvtxt|Schwimmer|Seiberg|1987}}: \alpha(L_n)=L_n +{1\over 2} J_n + {c\over 24}\delta_{n,0} \alpha(J_n)=J_n +{c\over 6}\delta_{n,0} \alpha(G_r^\pm)=G_{r\pm {1\over 2}}^\pm with inverse: \alpha^{-1}(L_n)=L_n -{1\over 2} J_n + {c\over 24}\delta_{n,0} \alpha^{-1}(J_n)=J_n -{c\over 6}\delta_{n,0} \alpha^{-1}(G_r^\pm)=G_{r\mp {1\over 2}}^\pm
  • In the N = 2 Ramond algebra, the zero mode operators L_0, J_0, G_0^\pm and the constants form a five-dimensional Lie superalgebra. They satisfy the same relations as the fundamental operators in Kähler geometry, with L_0 corresponding to the Laplacian, J_0 the degree operator, and G_0^\pm the \partial and \overline{\partial} operators.
  • Even integer powers of the spectral shift give automorphisms of the N = 2 superconformal algebras, called spectral shift automorphisms. Another automorphism \beta, of period two, is given by \beta(L_m) = L_m , \beta(J_m)=-J_m-{c\over 3} \delta_{m,0}, \beta(G_r^\pm)=G_r^\mp In terms of Kähler operators, \beta corresponds to conjugating the complex structure. Since \beta\alpha \beta^{-1}=\alpha^{-1}, the automorphisms \alpha^2 and \beta generate a group of automorphisms of the N = 2 superconformal algebra isomorphic to the infinite dihedral group {\Z}\rtimes {\Z}_2.
  • Twisted operators {\mathcal L}_n=L_n+ {1\over 2} (n+1)J_n were introduced by {{harvtxt|Eguchi|Yang|1990}} and satisfy: [{\mathcal L}_m,{\mathcal L}_n] = (m-n) {\mathcal L}_{m+n} so that these operators satisfy the Virasoro relation with central charge 0. The constant c still appears in the relations for J_m and the modified relations [{\mathcal L}_m,J_n] = -nJ_{m+n} + {c \over 6} \left(m^2 + m \right) \delta_{m+n,0} \{G_r^+,G_s^-\} = 2{\mathcal L}_{r+s}-2sJ_{r+s} + {c\over 3} \left(m^2+m\right) \delta_{m+n,0}

Constructions

=Free field construction=

{{harvs|last1=Green|last2=Schwarz|last3=Witten|year=1988a|year2=1988b|txt}} give a construction using two commuting real bosonic fields (a_n), (b_n)

: {[a_m,a_n]={m\over 2}\delta_{m+n,0},\,\,\,\, [b_m,b_n]={m\over 2}\delta_{m+n,0}},

\,\,\,\, a_n^*=a_{-n},\,\,\,\, b_n^*=b_{-n}

and a complex fermionic field (e_r)

: \{e_r,e^*_s\}=\delta_{r,s},\,\,\,\, \{e_r,e_s\}=0.

L_n is defined to the sum of the Virasoro operators naturally associated with each of the three systems

:L_n = \sum_m : a_{-m+n} a_m : + \sum_m : b_{-m+n} b_m : + \sum_r \left(r+{n\over 2}\right): e^*_{r}e_{n+r} :

where normal ordering has been used for bosons and fermions.

The current operator J_n is defined by the standard construction from fermions

:J_n = \sum_r : e_r^*e_{n+r} :

and the two supersymmetric operators G_r^\pm by

: G^+_r=\sum (a_{-m} + i b_{-m}) \cdot e_{r+m},\,\,\,\, G_r^-=\sum (a_{r+m} - ib_{r+m}) \cdot e^*_{m}

This yields an N = 2 Neveu–Schwarz algebra with c = 3.

=SU(2) supersymmetric coset construction=

{{harvtxt|Di Vecchia|Petersen|Yu|Zheng|1986}} gave a coset construction of the N = 2 superconformal algebras, generalizing the coset constructions of {{harvtxt|Goddard|Kent|Olive|1986}} for the discrete series representations of the Virasoro and super Virasoro algebra. Given a representation of the affine Kac–Moody algebra of SU(2) at level \ell with basis E_n,F_n,H_n satisfying

:[H_m,H_n]=2m\ell\delta_{n+m,0},

:[E_m,F_n]=H_{m+n}+m \ell\delta_{m+n,0},

:[H_m,E_n]=2E_{m+n},

:[H_m,F_n]=-2F_{m+n},

the supersymmetric generators are defined by

: G^+_r = (\ell/2+ 1)^{-1/2} \sum E_{-m} \cdot e_{m+r}, \,\,\, G^-_r = (\ell/2 +1 )^{-1/2} \sum F_{r+m}\cdot e_m^*.

This yields the N=2 superconformal algebra with

:c=3\ell/(\ell+2) .

The algebra commutes with the bosonic operators

:X_n=H_n - 2 \sum_r : e_r^*e_{n+r} :.

The space of physical states consists of eigenvectors of X_0 simultaneously annihilated by the X_n's for positive n and the supercharge operator

:Q=G_{1/2}^+ + G_{-1/2}^- (Neveu–Schwarz)

:Q=G_0^+ +G_0^-. (Ramond)

The supercharge operator commutes with the action of the affine Weyl group and the physical states lie in a single orbit of this group, a fact which implies the Weyl-Kac character formula.{{harvnb|Wassermann|2010}}

=Kazama–Suzuki supersymmetric coset construction=

{{harvtxt|Kazama|Suzuki|1989}} generalized the SU(2) coset construction to any pair consisting of a simple compact Lie group G and a closed subgroup H of maximal rank, i.e. containing a maximal torus T of G, with the additional condition that the dimension of the centre of H is non-zero. In this case the compact Hermitian symmetric space G/H is a Kähler manifold, for example when H=T. The physical states lie in a single orbit of the affine Weyl group, which again implies the Weyl–Kac character formula for the affine Kac–Moody algebra of G.

See also

Notes

{{reflist}}

References

  • {{Citation | last1=Ademollo | first1=M. | last2=Brink | first2=L. | last3=D'Adda | first3=A. | last4=D'Auria | first4=R. | last5=Napolitano | first5=E. | last6=Sciuto | first6=S. | last7=Giudice | first7=E. Del | last8=Vecchia | first8=P. Di | last9=Ferrara | first9=S. | last10=Gliozzi | first10=F. | last11=Musto | first11=R. | last12=Pettorino | first12=R. | title=Supersymmetric strings and colour confinement | doi=10.1016/0370-2693(76)90061-7 | year=1976 | journal=Physics Letters B | volume=62 | issue=1 | pages=105–110|bibcode = 1976PhLB...62..105A | url=https://cds.cern.ch/record/438898 }}
  • {{citation|first1=W.|last1=Boucher|first2=D|last2=Friedan|authorlink2=Daniel Friedan|first3=A.|last3=Kent|title=Determinant formulae and unitarity for the N = 2 superconformal algebras in two dimensions or exact results on string compactification|journal=Phys. Lett. B|volume=172|issue=3–4|year=1986|pages=316–322| doi = 10.1016/0370-2693(86)90260-1 |bibcode = 1986PhLB..172..316B }}
  • {{citation|last1=Di Vecchia|first1= P.|last2 =Petersen|first2=J. L.|last3=Yu|first3= M.|last4=Zheng|first4= H. B.|title=Explicit construction of unitary representations of the N = 2 superconformal algebra|journal=Phys. Lett. B |volume=174 |issue= 3|year=1986|pages=280–284|doi=10.1016/0370-2693(86)91099-3|bibcode = 1986PhLB..174..280D }}
  • {{citation|last1=Eguchi|first1=Tohru|last2= Yang|first2=Sung-Kil|title=N = 2 superconformal models as topological field theories|

journal=Mod. Phys. Lett. A|volume= 5 |year=1990|issue=21|pages=1693–1701|doi=10.1142/S0217732390001943|bibcode=1990MPLA....5.1693E }}

  • {{citation|first1=P.|last1= Goddard|authorlink=Peter Goddard (physicist)|first2= A.|last2= Kent|first3=D.|last3= Olive|authorlink3=David Olive|url =http://projecteuclid.org/Dienst/UI/1.0/Summarize/euclid.cmp/1104114626 |title=Unitary representations of the Virasoro and super-Virasoro algebras|journal= Comm. Math. Phys. |volume= 103|issue= 1|year=1986|pages=105–119|doi=10.1007/bf01464283|bibcode = 1986CMaPh.103..105G |s2cid= 91181508}}
  • {{citation|first1=Michael B.|last1=Green|authorlink=Michael B. Green|first2=John H.|last2=Schwarz|authorlink2=John Henry Schwarz|first3=Edward|last3=Witten|

authorlink3=Edward Witten|title=Superstring theory, Volume 1: Introduction|publisher=Cambridge University Press|year=1988a|isbn=0-521-35752-7}}

  • {{citation|first1=Michael B.|last1=Green|authorlink=Michael B. Green|first2=John H.|last2=Schwarz|authorlink2=John Henry Schwarz|first3=Edward|last3=Witten|

authorlink3=Edward Witten|title=Superstring theory, Volume 2: Loop amplitudes, anomalies and phenomenology|publisher=Cambridge University Press|year=1988b|

isbn=0-521-35753-5|bibcode=1987cup..bookR....G}}

  • {{citation|last1=Kazama|first1= Yoichi|last2= Suzuki|first2= Hisao|title=New N = 2 superconformal field theories and superstring compactification|journal=Nuclear Physics B |volume=321 |issue= 1|year=1989|pages= 232–268|doi=10.1016/0550-3213(89)90250-2|bibcode = 1989NuPhB.321..232K }}
  • {{citation|last1=Schwimmer|first1= A.|last2= Seiberg|first2= N.|authorlink2=Nathan Seiberg|title=Comments on the N = 2, 3, 4 superconformal algebras in two dimensions|journal=Phys. Lett. B |volume=184|issue= 2–3|year=1987|pages=191–196|bibcode = 1987PhLB..184..191S |doi = 10.1016/0370-2693(87)90566-1 }}
  • {{citation|first=Claire|last=Voisin|authorlink=Claire Voisin|title=Mirror symmetry|series=SMF/AMS texts and monographs|volume=1|year=1999|publisher=American Mathematical Society|isbn=0-8218-1947-X}}
  • {{cite news | last1=Wassermann | first1=A. J.|authorlink1=Antony Wassermann| title=Lecture notes on Kac-Moody and Virasoro algebras | orig-year=1998 | eprint=1004.1287 | year=2010 }}
  • {{citation|title=Introduction to supersymmetry and supergravity|first=Peter C.|last=West|edition=2nd|publisher=World Scientific|year=1990|isbn=981-02-0099-4|pages=337–8}}

{{DEFAULTSORT:N 2 Superconformal Algebra}}

Category:String theory

Category:Conformal field theory

Category:Lie algebras

Category:Representation theory

Category:Supersymmetry