Natural logarithm of 2
{{Short description|Mathematical constant}}
{{infobox non-integer number
| image = Natural Logarithm of 2.png
| image_caption = The natural logarithm of 2 as an area under the curve 1/x.
| rationality = Irrational
| decimal = {{gaps|0.69314|71805|59945|3094...}}
}}
In mathematics, the natural logarithm of 2 is the unique real number argument such that the exponential function equals two. It appears frequently in various formulas and is also given by the alternating harmonic series. The decimal value of the natural logarithm of 2 {{OEIS|A002162}} truncated at 30 decimal places is given by:
:
The logarithm of 2 in other bases is obtained with the formula
:
The common logarithm in particular is ({{OEIS2C|A007524}})
:
The inverse of this number is the binary logarithm of 10:
: ({{OEIS2C|A020862}}).
By the Lindemann–Weierstrass theorem, the natural logarithm of any natural number other than 0 and 1 (more generally, of any positive algebraic number other than 1) is a transcendental number. It is also contained in the ring of algebraic periods.
Series representations
=Rising alternate factorial=
: This is the well-known "alternating harmonic series".
:
:
:
:
:
:
=Binary rising constant factorial=
:
:
:
:
:
:
=Other series representations=
=Involving the Riemann Zeta function=
=BBP-type representations=
:
(See more about Bailey–Borwein–Plouffe (BBP)-type representations.)
Applying the three general series for natural logarithm to 2 directly gives:
:
:
:
Applying them to gives:
:
:
:
Applying them to gives:
:
:
:
Applying them to gives:
:
:
:
Representation as integrals
The natural logarithm of 2 occurs frequently as the result of integration. Some explicit formulas for it include:
:
:
:
:
:
Other representations
The Pierce expansion is {{OEIS2C|A091846}}
:
The Engel expansion is {{OEIS2C|A059180}}
:
The cotangent expansion is {{OEIS2C|A081785}}
:
The simple continued fraction expansion is {{OEIS2C|A016730}}
:,
which yields rational approximations, the first few of which are 0, 1, 2/3, 7/10, 9/13 and 61/88.
This generalized continued fraction:
:also expressible as
:
= \cfrac{2} {3-\cfrac{1^2} {9-\cfrac{2^2} {15-\cfrac{3^2} {21-\ddots}}}}
Bootstrapping other logarithms
Given a value of {{math|ln 2}}, a scheme of computing the logarithms of other integers is to tabulate the logarithms of the prime numbers and in the next layer the logarithms of the composite numbers {{math|c}} based on their factorizations
:
This employs
class="wikitable sortable"
! Prime!!Approximate natural logarithm!!OEIS | ||
2 | {{val|0.693147180559945309417232121458}} | {{OEIS link|A002162}} |
3 | {{val|1.09861228866810969139524523692}} | {{OEIS link|A002391}} |
5 | {{val|1.60943791243410037460075933323}} | {{OEIS link|A016628}} |
7 | {{val|1.94591014905531330510535274344}} | {{OEIS link|A016630}} |
11 | {{val|2.39789527279837054406194357797}} | {{OEIS link|A016634}} |
13 | {{val|2.56494935746153673605348744157}} | {{OEIS link|A016636}} |
17 | {{val|2.83321334405621608024953461787}} | {{OEIS link|A016640}} |
19 | {{val|2.94443897916644046000902743189}} | {{OEIS link|A016642}} |
23 | {{val|3.13549421592914969080675283181}} | {{OEIS link|A016646}} |
29 | {{val|3.36729582998647402718327203236}} | {{OEIS link|A016652}} |
31 | {{val|3.43398720448514624592916432454}} | {{OEIS link|A016654}} |
37 | {{val|3.61091791264422444436809567103}} | {{OEIS link|A016660}} |
41 | {{val|3.71357206670430780386676337304}} | {{OEIS link|A016664}} |
43 | {{val|3.76120011569356242347284251335}} | {{OEIS link|A016666}} |
47 | {{val|3.85014760171005858682095066977}} | {{OEIS link|A016670}} |
53 | {{val|3.97029191355212183414446913903}} | {{OEIS link|A016676}} |
59 | {{val|4.07753744390571945061605037372}} | {{OEIS link|A016682}} |
61 | {{val|4.11087386417331124875138910343}} | {{OEIS link|A016684}} |
67 | {{val|4.20469261939096605967007199636}} | {{OEIS link|A016690}} |
71 | {{val|4.26267987704131542132945453251}} | {{OEIS link|A016694}} |
73 | {{val|4.29045944114839112909210885744}} | {{OEIS link|A016696}} |
79 | {{val|4.36944785246702149417294554148}} | {{OEIS link|A016702}} |
83 | {{val|4.41884060779659792347547222329}} | {{OEIS link|A016706}} |
89 | {{val|4.48863636973213983831781554067}} | {{OEIS link|A016712}} |
97 | {{val|4.57471097850338282211672162170}} | {{OEIS link|A016720}} |
In a third layer, the logarithms of rational numbers {{math|r {{=}} {{sfrac|a|b}}}} are computed with {{math|ln(r) {{=}} ln(a) − ln(b)}}, and logarithms of roots via {{math|ln {{radic|c|n}} {{=}} {{sfrac|1|n}} ln(c)}}.
The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers {{math|2{{sup|i}}}} close to powers {{math|b{{sup|j}}}} of other numbers {{math|b}} is comparatively easy, and series representations of {{math|ln(b)}} are found by coupling 2 to {{math|b}} with logarithmic conversions.
=Example=
If {{math|p{{sup|s}} {{=}} q{{sup|t}} + d}} with some small {{math|d}}, then {{math|{{sfrac|p{{sup|s}}|q{{sup|t}}}} {{=}} 1 + {{sfrac|d|q{{sup|t}}}}}} and therefore
:
Selecting {{math|q {{=}} 2}} represents {{math|ln p}} by {{math|ln 2}} and a series of a parameter {{math|{{sfrac|d|q{{sup|t}}}}}} that one wishes to keep small for quick convergence. Taking {{math|3{{sup|2}} {{=}} 2{{sup|3}} + 1}}, for example, generates
:
This is actually the third line in the following table of expansions of this type:
class="wikitable sortable" style="text-align: right"
! {{math|s}}!!{{math|p}}!!{{math|t}}!!{{math|q}}!!{{math|{{sfrac|d|q{{sup|t}}}}}} | ||||
1 | 3 | 1 | 2 | {{sfrac|1|2}} = {{0|−}}{{val|0.50000000}}… |
1 | 3 | 2 | 2 | −{{sfrac|1|4}} = −{{val|0.25000000}}… |
2 | 3 | 3 | 2 | {{sfrac|1|8}} = {{0|−}}{{val|0.12500000}}… |
5 | 3 | 8 | 2 | −{{sfrac|13|256}} = −{{val|0.05078125}}… |
12 | 3 | 19 | 2 | {{sfrac|7153|{{val|524288}}}} = {{0|−}}{{val|0.01364326}}… |
1 | 5 | 2 | 2 | {{sfrac|1|4}} = {{0|−}}{{val|0.25000000}}… |
3 | 5 | 7 | 2 | −{{sfrac|3|128}} = −{{val|0.02343750}}… |
1 | 7 | 2 | 2 | {{sfrac|3|4}} = {{0|−}}{{val|0.75000000}}… |
1 | 7 | 3 | 2 | −{{sfrac|1|8}} = −{{val|0.12500000}}… |
5 | 7 | 14 | 2 | {{sfrac|423|{{val|16384}}}} = {{0|−}}{{val|0.02581787}}… |
1 | 11 | 3 | 2 | {{sfrac|3|8}} = {{0|−}}{{val|0.37500000}}… |
2 | 11 | 7 | 2 | −{{sfrac|7|128}} = −{{val|0.05468750}}… |
11 | 11 | 38 | 2 | {{sfrac|{{val|10433763667}}|{{val|274877906944}}}} = {{0|−}}{{val|0.03795781}}… |
1 | 13 | 3 | 2 | {{sfrac|5|8}} = {{0|−}}{{val|0.62500000}}… |
1 | 13 | 4 | 2 | −{{sfrac|3|16}} = −{{val|0.18750000}}… |
3 | 13 | 11 | 2 | {{sfrac|149|2048}} = {{0|−}}{{val|0.07275391}}… |
7 | 13 | 26 | 2 | −{{sfrac|{{val|4360347}}|{{val|67108864}}}} = −{{val|0.06497423}}… |
10 | 13 | 37 | 2 | {{sfrac|{{val|419538377}}|{{val|137438953472}}}} = {{0|−}}{{val|0.00305254}}… |
1 | 17 | 4 | 2 | {{sfrac|1|16}} = {{0|−}}{{val|0.06250000}}… |
1 | 19 | 4 | 2 | {{sfrac|3|16}} = {{0|−}}{{val|0.18750000}}… |
4 | 19 | 17 | 2 | −{{sfrac|751|{{val|131072}}}} = −{{val|0.00572968}}… |
1 | 23 | 4 | 2 | {{sfrac|7|16}} = {{0|−}}{{val|0.43750000}}… |
1 | 23 | 5 | 2 | −{{sfrac|9|32}} = −{{val|0.28125000}}… |
2 | 23 | 9 | 2 | {{sfrac|17|512}} = {{0|−}}{{val|0.03320312}}… |
1 | 29 | 4 | 2 | {{sfrac|13|16}} = {{0|−}}{{val|0.81250000}}… |
1 | 29 | 5 | 2 | −{{sfrac|3|32}} = −{{val|0.09375000}}… |
7 | 29 | 34 | 2 | {{sfrac|{{val|70007125}}|{{val|17179869184}}}} = {{0|−}}{{val|0.00407495}}… |
1 | 31 | 5 | 2 | −{{sfrac|1|32}} = −{{val|0.03125000}}… |
1 | 37 | 5 | 2 | {{sfrac|5|32}} = {{0|−}}{{val|0.15625000}}… |
4 | 37 | 21 | 2 | −{{sfrac|{{val|222991}}|{{val|2097152}}}} = −{{val|0.10633039}}… |
5 | 37 | 26 | 2 | {{sfrac|{{val|2235093}}|{{val|67108864}}}} = {{0|−}}{{val|0.03330548}}… |
1 | 41 | 5 | 2 | {{sfrac|9|32}} = {{0|−}}{{val|0.28125000}}… |
2 | 41 | 11 | 2 | −{{sfrac|367|2048}} = −{{val|0.17919922}}… |
3 | 41 | 16 | 2 | {{sfrac|3385|{{val|65536}}}} = {{0|−}}{{val|0.05165100}}… |
1 | 43 | 5 | 2 | {{sfrac|11|32}} = {{0|−}}{{val|0.34375000}}… |
2 | 43 | 11 | 2 | −{{sfrac|199|2048}} = −{{val|0.09716797}}… |
5 | 43 | 27 | 2 | {{sfrac|{{val|12790715}}|{{val|134217728}}}} = {{0|−}}{{val|0.09529825}}… |
7 | 43 | 38 | 2 | −{{sfrac|{{val|3059295837}}|{{val|274877906944}}}} = −{{val|0.01112965}}… |
Starting from the natural logarithm of {{math|q {{=}} 10}} one might use these parameters:
class="wikitable sortable" style="text-align: right"
! {{math|s}}!!{{math|p}}!!{{math|t}}!!{{math|q}}!!{{math|{{sfrac|d|q{{sup|t}}}}}} | ||||
10 | 2 | 3 | 10 | {{sfrac|3|125}} = {{0|−}}{{val|0.02400000}}… |
21 | 3 | 10 | 10 | {{sfrac|{{val|460353203}}|{{val|10000000000}}}} = {{0|−}}{{val|0.04603532}}… |
3 | 5 | 2 | 10 | {{sfrac|1|4}} = {{0|−}}{{val|0.25000000}}… |
10 | 5 | 7 | 10 | −{{sfrac|3|128}} = −{{val|0.02343750}}… |
6 | 7 | 5 | 10 | {{sfrac|{{val|17649}}|{{val|100000}}}} = {{0|−}}{{val|0.17649000}}… |
13 | 7 | 11 | 10 | −{{sfrac|{{val|3110989593}}|{{val|100000000000}}}} = −{{val|0.03110990}}… |
1 | 11 | 1 | 10 | {{sfrac|1|10}} = {{0|−}}{{val|0.10000000}}… |
1 | 13 | 1 | 10 | {{sfrac|3|10}} = {{0|−}}{{val|0.30000000}}… |
8 | 13 | 9 | 10 | −{{sfrac|{{val|184269279}}|{{val|1000000000}}}} = −{{val|0.18426928}}… |
9 | 13 | 10 | 10 | {{sfrac|{{val|604499373}}|{{val|10000000000}}}} = {{0|−}}{{val|0.06044994}}… |
1 | 17 | 1 | 10 | {{sfrac|7|10}} = {{0|−}}{{val|0.70000000}}… |
4 | 17 | 5 | 10 | −{{sfrac|{{val|16479}}|{{val|100000}}}} = −{{val|0.16479000}}… |
9 | 17 | 11 | 10 | {{sfrac|{{val|18587876497}}|{{val|100000000000}}}} = {{0|−}}{{val|0.18587876}}… |
3 | 19 | 4 | 10 | −{{sfrac|3141|{{val|10000}}}} = −{{val|0.31410000}}… |
4 | 19 | 5 | 10 | {{sfrac|{{val|30321}}|{{val|100000}}}} = {{0|−}}{{val|0.30321000}}… |
7 | 19 | 9 | 10 | −{{sfrac|{{val|106128261}}|{{val|1000000000}}}} = −{{val|0.10612826}}… |
2 | 23 | 3 | 10 | −{{sfrac|471|1000}} = −{{val|0.47100000}}… |
3 | 23 | 4 | 10 | {{sfrac|2167|{{val|10000}}}} = {{0|−}}{{val|0.21670000}}… |
2 | 29 | 3 | 10 | −{{sfrac|159|1000}} = −{{val|0.15900000}}… |
2 | 31 | 3 | 10 | −{{sfrac|39|1000}} = −{{val|0.03900000}}… |
Known digits
This is a table of recent records in calculating digits of {{math|ln 2}}. As of December 2018, it has been calculated to more digits than any other natural logarithm{{cite web|url=http://www.numberworld.org/y-cruncher/|title=y-cruncher|author=|date=|work=numberworld.org|accessdate=10 December 2018}}{{cite web|url=http://www.numberworld.org/digits/Log(2)/|title=Natural log of 2|author=|date=|work=numberworld.org|accessdate=10 December 2018}} of a natural number, except that of 1.
See also
- Rule of 72#Continuous compounding, in which {{math|ln 2}} figures prominently
- Half-life#Formulas for half-life in exponential decay, in which {{math|ln 2}} figures prominently
- Erdős–Moser equation: all solutions must come from a convergent of {{math|ln 2}}.
References
- {{cite journal
|first1=Richard P.
|last1=Brent
|title=Fast multiple-precision evaluation of elementary functions
|journal=J. ACM
|volume=23
|issue=2
|year=1976
|pages=242–251
|doi=10.1145/321941.321944
|mr=0395314
|s2cid=6761843
|doi-access=free
}}
- {{cite journal
|first1=Horace S.
|last1=Uhler
|title=Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17
|journal=Proc. Natl. Acad. Sci. U.S.A.
|volume=26
|issue=3
|year=1940
|pages=205–212
|mr=0001523
|doi=10.1073/pnas.26.3.205
|pmc=1078033
|pmid=16588339
|bibcode=1940PNAS...26..205U
|doi-access=free
}}
- {{cite journal
|first1=Dura W.
|last1=Sweeney
|title=On the computation of Euler's constant
|journal=Mathematics of Computation
|year=1963
|volume=17
|issue=82
|pages=170–178
|doi=10.1090/S0025-5718-1963-0160308-X
|mr=0160308
|doi-access=free
}}
- {{cite journal
|first1=Marc
|last1=Chamberland
|title=Binary BBP-formulae for logarithms and generalized Gaussian–Mersenne primes
|journal=Journal of Integer Sequences
|url=http://www.emis.de/journals/JIS/VOL6/Chamberland/chamberland60.pdf
|volume=6
|page=03.3.7
|year=2003
|bibcode=2003JIntS...6...37C
|mr=2046407
|access-date=2010-04-29
|archive-url=https://web.archive.org/web/20110606014342/http://www.emis.de/journals/JIS/VOL6/Chamberland/chamberland60.pdf
|archive-date=2011-06-06
|url-status=dead
}}
- {{cite journal
|first1=Boris
|last1=Gourévitch
|first2=Jesús
|last2=Guillera Goyanes
|title=Construction of binomial sums for {{pi}} and polylogarithmic constants inspired by BBP formulas
|journal=Applied Math. E-Notes
|volume=7
|year=2007
|url=http://www.math.nthu.edu.tw/~amen/2007/061028-2.pdf
|mr=2346048
|pages=237–246}}
- {{cite journal
|first1=Qiang
|last1=Wu
|title=On the linear independence measure of logarithms of rational numbers
|journal=Mathematics of Computation
|volume=72
|issue=242
|pages=901–911
|doi=10.1090/S0025-5718-02-01442-4
|year=2003
|doi-access=free
}}
{{reflist}}
External links
- {{MathWorld|urlname=NaturalLogarithmof2|title=Natural logarithm of 2}}
- {{cite web|url=http://numbers.computation.free.fr/Constants/Log2/log2.html|title=The logarithm constant:log 2|last1=Gourdon|first1=Xavier|last2=Sebah|first2=Pascal}}
{{Irrational number}}
{{DEFAULTSORT:Natural Logarithm Of 2}}