Natural logarithm of 2

{{Short description|Mathematical constant}}

{{infobox non-integer number

| image = Natural Logarithm of 2.png

| image_caption = The natural logarithm of 2 as an area under the curve 1/x.

| rationality = Irrational

| decimal = {{gaps|0.69314|71805|59945|3094...}}

}}

In mathematics, the natural logarithm of 2 is the unique real number argument such that the exponential function equals two. It appears frequently in various formulas and is also given by the alternating harmonic series. The decimal value of the natural logarithm of 2 {{OEIS|A002162}} truncated at 30 decimal places is given by:

:\ln 2 \approx 0.693\,147\,180\,559\,945\,309\,417\,232\,121\,458.

The logarithm of 2 in other bases is obtained with the formula

:\log_b 2 = \frac{\ln 2}{\ln b}.

The common logarithm in particular is ({{OEIS2C|A007524}})

:\log_{10} 2 \approx 0.301\,029\,995\,663\,981\,195.

The inverse of this number is the binary logarithm of 10:

: \log_2 10 =\frac{1}{\log_{10} 2} \approx 3.321\,928\,095 ({{OEIS2C|A020862}}).

By the Lindemann–Weierstrass theorem, the natural logarithm of any natural number other than 0 and 1 (more generally, of any positive algebraic number other than 1) is a transcendental number. It is also contained in the ring of algebraic periods.

Series representations

=Rising alternate factorial=

:\ln 2 = \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}=1-\frac12+\frac13-\frac14+\frac15-\frac16+\cdots. This is the well-known "alternating harmonic series".

:\ln 2 = \frac{1}{2} +\frac{1}{2}\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n(n+1)}.

:\ln 2 = \frac{5}{8} +\frac{1}{2}\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n(n+1)(n+2)}.

:\ln 2 = \frac{2}{3} +\frac{3}{4}\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n(n+1)(n+2)(n+3)}.

:\ln 2 = \frac{131}{192} +\frac{3}{2}\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n(n+1)(n+2)(n+3)(n+4)}.

:\ln 2 = \frac{661}{960} +\frac{15}{4}\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n(n+1)(n+2)(n+3)(n+4)(n+5)}.

:\ln 2 = \frac{2}{3}\left(1+\frac{2}{4^3-4}+\frac{2}{8^3-8}+\frac{2}{12^3-12}+\dots\right) .

=Binary rising constant factorial=

:\ln 2 = \sum_{n=1}^\infty \frac{1}{2^{n}n}.

:\ln 2 = 1 -\sum_{n=1}^\infty \frac{1}{2^{n}n(n+1)}.

:\ln 2 = \frac{1}{2} + 2 \sum_{n=1}^\infty \frac{1}{2^{n}n(n+1)(n+2)} .

:\ln 2 = \frac{5}{6} - 6 \sum_{n=1}^\infty \frac{1}{2^{n}n(n+1)(n+2)(n+3)} .

:\ln 2 = \frac{7}{12} + 24 \sum_{n=1}^\infty \frac{1}{2^{n}n(n+1)(n+2)(n+3)(n+4)} .

:\ln 2 = \frac{47}{60} - 120 \sum_{n=1}^\infty \frac{1}{2^{n}n(n+1)(n+2)(n+3)(n+4)(n+5)} .

=Other series representations=

:\sum_{n=0}^\infty \frac{1}{(2n+1)(2n+2)} = \ln 2.

:\sum_{n=1}^\infty \frac{1}{n(4n^2-1)} = 2\ln 2 -1.

:\sum_{n=1}^\infty \frac{(-1)^n}{n(4n^2-1)} = \ln 2 -1.

:\sum_{n=1}^\infty \frac{(-1)^n}{n(9n^2-1)} = 2\ln 2 -\frac{3}{2}.

:\sum_{n=1}^\infty \frac{1}{4n^2-2n} = \ln 2.

:\sum_{n=1}^\infty \frac{2(-1)^{n+1}(2n-1)+1}{8n^2-4n} = \ln 2.

:\sum_{n=0}^\infty \frac{(-1)^{n}}{3n+1} = \frac{\ln 2}{3}+\frac{\pi}{3\sqrt{3}}.

:\sum_{n=0}^\infty \frac{(-1)^{n}}{3n+2} = -\frac{\ln 2}{3}+\frac{\pi}{3\sqrt{3}}.

:\sum_{n=0}^\infty \frac{(-1)^{n}}{(3n+1)(3n+2)} = \frac{2\ln 2}{3}.

:\sum_{n=1}^\infty \frac{1}{\sum_{k=1}^n k^2} = 18 - 24 \ln 2 using \lim_{N\rightarrow \infty} \sum_{n=N}^{2N} \frac{1}{n} = \ln 2

:\sum_{n=1}^\infty \frac{1}{4n^2-3n} = \ln 2 + \frac{\pi}{6} (sums of the reciprocals of decagonal numbers)

=Involving the Riemann Zeta function=

:\sum_{n=1}^\infty \frac{1}{n}[\zeta(2n)-1] = \ln 2.

:\sum_{n=2}^\infty \frac{1}{2^n}[\zeta(n)-1] = \ln 2 -\frac{1}{2}.

:\sum_{n=1}^\infty \frac{1}{2n+1}[\zeta(2n+1)-1] = 1-\gamma-\frac{\ln 2}{2}.

:\sum_{n=1}^\infty \frac{1}{2^{2n-1}(2n+1)}\zeta(2n) = 1-\ln 2.

({{math|γ}} is the Euler–Mascheroni constant and {{math|ζ}} Riemann's zeta function.)

=BBP-type representations=

:\ln 2 = \frac{2}{3} + \frac{1}{2} \sum_{k = 1}^\infty \left(\frac{1}{2k}+\frac{1}{4k+1}+\frac{1}{8k+4}+\frac{1}{16k+12}\right) \frac{1}{16^k} .

(See more about Bailey–Borwein–Plouffe (BBP)-type representations.)

Applying the three general series for natural logarithm to 2 directly gives:

:\ln 2 = \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{n}.

:\ln 2 = \sum_{n = 1}^\infty \frac{1}{2^{n}n}.

:\ln 2 = \frac{2}{3} \sum_{k = 0}^\infty \frac{1}{9^{k}(2k+1)}.

Applying them to \textstyle 2 = \frac{3}{2} \cdot \frac{4}{3} gives:

:\ln 2 = \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{2^n n} + \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{3^n n} .

:\ln 2 = \sum_{n = 1}^\infty \frac{1}{3^n n} + \sum_{n = 1}^\infty \frac{1}{4^n n} .

:\ln 2 = \frac{2}{5} \sum_{k = 0}^\infty \frac{1}{25^{k}(2k+1)} + \frac{2}{7} \sum_{k = 0}^\infty \frac{1}{49^{k}(2k+1)} .

Applying them to \textstyle 2 = (\sqrt{2})^2 gives:

:\ln 2 = 2 \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{(\sqrt{2} + 1)^n n} .

:\ln 2 = 2 \sum_{n = 1}^\infty \frac{1}{(2 + \sqrt{2})^n n} .

:\ln 2 = \frac{4}{3 + 2 \sqrt{2}} \sum_{k = 0}^\infty \frac{1}{(17 + 12 \sqrt{2})^{k}(2k+1)} .

Applying them to \textstyle 2 = { \left( \frac{16}{15} \right) }^{7} \cdot { \left( \frac{81}{80} \right) }^{3} \cdot { \left( \frac{25}{24} \right) }^{5} gives:

:\ln 2 = 7 \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{15^n n} + 3 \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{80^n n} + 5 \sum_{n = 1}^\infty \frac{(-1)^{n-1}}{24^n n} .

:\ln 2 = 7 \sum_{n = 1}^\infty \frac{1}{16^n n} + 3 \sum_{n = 1}^\infty \frac{1}{81^n n} + 5 \sum_{n = 1}^\infty \frac{1}{25^n n} .

:\ln 2 = \frac{14}{31} \sum_{k = 0}^\infty \frac{1}{961^{k}(2k+1)} + \frac{6}{161} \sum_{k = 0}^\infty \frac{1}{25921^{k}(2k+1)} + \frac{10}{49} \sum_{k = 0}^\infty \frac{1}{2401^{k}(2k+1)} .

Representation as integrals

The natural logarithm of 2 occurs frequently as the result of integration. Some explicit formulas for it include:

:\int_0^1 \frac{dx}{1+x} = \int_1^2 \frac{dx}{x} = \ln 2

:\int_0^\infty e^{-x}\frac{1-e^{-x}}{x} \, dx= \ln 2

:\int_0^\infty 2^{-x} dx= \frac{1}{\ln 2}

:\int_0^\frac{\pi}{3} \tan x \, dx=2\int_0^\frac{\pi}{4} \tan x \, dx = \ln 2

:-\frac{1}{\pi i}\int_{0}^{\infty} \frac{\ln x \ln\ln x}{(x+1)^2} \, dx= \ln 2

Other representations

The Pierce expansion is {{OEIS2C|A091846}}

: \ln 2 = 1 -\frac{1}{1\cdot 3}+\frac{1}{1\cdot 3\cdot 12} -\cdots.

The Engel expansion is {{OEIS2C|A059180}}

: \ln 2 = \frac{1}{2} + \frac{1}{2\cdot 3} + \frac{1}{2\cdot 3\cdot 7} + \frac{1}{2\cdot 3\cdot 7\cdot 9}+\cdots.

The cotangent expansion is {{OEIS2C|A081785}}

: \ln 2 = \cot({\arccot(0) -\arccot(1) + \arccot(5) - \arccot(55) + \arccot(14187) -\cdots}).

The simple continued fraction expansion is {{OEIS2C|A016730}}

: \ln 2 = \left[ 0; 1, 2, 3, 1, 6, 3, 1, 1, 2, 1, 1, 1, 1, 3, 10, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1,...\right],

which yields rational approximations, the first few of which are 0, 1, 2/3, 7/10, 9/13 and 61/88.

This generalized continued fraction:

: \ln 2 = \left[ 0;1,2,3,1,5,\tfrac{2}{3},7,\tfrac{1}{2},9,\tfrac{2}{5},...,2k-1,\frac{2}{k},...\right] ,{{cite journal|year=2004|volume=13|first1=J. |last1=Borwein| first2=R. | last2=Crandall| first3=G. | last3=Free|journal=Exper. Math. |title= On the Ramanujan AGM Fraction, I: The Real-Parameter Case|number=3 | pages=278–280|url=http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EM/expmath/volumes/13/13.3/BorweinCrandallFee.pdf|doi=10.1080/10586458.2004.10504540|s2cid=17758274}}

:also expressible as

: \ln 2 = \cfrac{1} {1+\cfrac{1} {2+\cfrac{1} {3+\cfrac{2} {2+\cfrac{2} {5+\cfrac{3} {2+\cfrac{3} {7+\cfrac{4} {2+\ddots}}}}}}}}

= \cfrac{2} {3-\cfrac{1^2} {9-\cfrac{2^2} {15-\cfrac{3^2} {21-\ddots}}}}

Bootstrapping other logarithms

Given a value of {{math|ln 2}}, a scheme of computing the logarithms of other integers is to tabulate the logarithms of the prime numbers and in the next layer the logarithms of the composite numbers {{math|c}} based on their factorizations

:c=2^i3^j5^k7^l\cdots\rightarrow \ln(c)=i\ln(2)+j\ln(3)+k\ln(5)+l\ln(7)+\cdots

This employs

class="wikitable sortable"

! Prime!!Approximate natural logarithm!!OEIS

2{{val|0.693147180559945309417232121458}}{{OEIS link|A002162}}
3{{val|1.09861228866810969139524523692}}{{OEIS link|A002391}}
5{{val|1.60943791243410037460075933323}}{{OEIS link|A016628}}
7{{val|1.94591014905531330510535274344}}{{OEIS link|A016630}}
11{{val|2.39789527279837054406194357797}}{{OEIS link|A016634}}
13{{val|2.56494935746153673605348744157}}{{OEIS link|A016636}}
17{{val|2.83321334405621608024953461787}}{{OEIS link|A016640}}
19{{val|2.94443897916644046000902743189}}{{OEIS link|A016642}}
23{{val|3.13549421592914969080675283181}}{{OEIS link|A016646}}
29{{val|3.36729582998647402718327203236}}{{OEIS link|A016652}}
31{{val|3.43398720448514624592916432454}}{{OEIS link|A016654}}
37{{val|3.61091791264422444436809567103}}{{OEIS link|A016660}}
41{{val|3.71357206670430780386676337304}}{{OEIS link|A016664}}
43{{val|3.76120011569356242347284251335}}{{OEIS link|A016666}}
47{{val|3.85014760171005858682095066977}}{{OEIS link|A016670}}
53{{val|3.97029191355212183414446913903}}{{OEIS link|A016676}}
59{{val|4.07753744390571945061605037372}}{{OEIS link|A016682}}
61{{val|4.11087386417331124875138910343}}{{OEIS link|A016684}}
67{{val|4.20469261939096605967007199636}}{{OEIS link|A016690}}
71{{val|4.26267987704131542132945453251}}{{OEIS link|A016694}}
73{{val|4.29045944114839112909210885744}}{{OEIS link|A016696}}
79{{val|4.36944785246702149417294554148}}{{OEIS link|A016702}}
83{{val|4.41884060779659792347547222329}}{{OEIS link|A016706}}
89{{val|4.48863636973213983831781554067}}{{OEIS link|A016712}}
97{{val|4.57471097850338282211672162170}}{{OEIS link|A016720}}

In a third layer, the logarithms of rational numbers {{math|r {{=}} {{sfrac|a|b}}}} are computed with {{math|ln(r) {{=}} ln(a) − ln(b)}}, and logarithms of roots via {{math|ln {{radic|c|n}} {{=}} {{sfrac|1|n}} ln(c)}}.

The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers {{math|2{{sup|i}}}} close to powers {{math|b{{sup|j}}}} of other numbers {{math|b}} is comparatively easy, and series representations of {{math|ln(b)}} are found by coupling 2 to {{math|b}} with logarithmic conversions.

=Example=

If {{math|p{{sup|s}} {{=}} q{{sup|t}} + d}} with some small {{math|d}}, then {{math|{{sfrac|p{{sup|s}}|q{{sup|t}}}} {{=}} 1 + {{sfrac|d|q{{sup|t}}}}}} and therefore

: s\ln p -t\ln q = \ln\left(1+\frac{d}{q^t}\right) = \sum_{m=1}^\infty \frac{(-1)^{m+1}}{m}\left(\frac{d}{q^t}\right)^m = \sum_{n=0}^\infty \frac{2}{2n+1} {\left(\frac{d}{2 q^t + d}\right)}^{2n+1} .

Selecting {{math|q {{=}} 2}} represents {{math|ln p}} by {{math|ln 2}} and a series of a parameter {{math|{{sfrac|d|q{{sup|t}}}}}} that one wishes to keep small for quick convergence. Taking {{math|3{{sup|2}} {{=}} 2{{sup|3}} + 1}}, for example, generates

:2\ln 3 = 3\ln 2 -\sum_{k\ge 1}\frac{(-1)^k}{8^{k}k} = 3\ln 2 + \sum_{n=0}^\infty \frac{2}{2n+1} {\left(\frac{1}{2 \cdot 8 + 1}\right)}^{2n+1} .

This is actually the third line in the following table of expansions of this type:

class="wikitable sortable" style="text-align: right"

! {{math|s}}!!{{math|p}}!!{{math|t}}!!{{math|q}}!!{{math|{{sfrac|d|q{{sup|t}}}}}}

1312{{sfrac|1|2}} = {{0|−}}{{val|0.50000000}}…
1322−{{sfrac|1|4}} = −{{val|0.25000000}}…
2332{{sfrac|1|8}} = {{0|−}}{{val|0.12500000}}…
5382−{{sfrac|13|256}} = −{{val|0.05078125}}…
123192{{sfrac|7153|{{val|524288}}}} = {{0|−}}{{val|0.01364326}}…
1522{{sfrac|1|4}} = {{0|−}}{{val|0.25000000}}…
3572−{{sfrac|3|128}} = −{{val|0.02343750}}…
1722{{sfrac|3|4}} = {{0|−}}{{val|0.75000000}}…
1732−{{sfrac|1|8}} = −{{val|0.12500000}}…
57142{{sfrac|423|{{val|16384}}}} = {{0|−}}{{val|0.02581787}}…
11132{{sfrac|3|8}} = {{0|−}}{{val|0.37500000}}…
21172−{{sfrac|7|128}} = −{{val|0.05468750}}…
1111382{{sfrac|{{val|10433763667}}|{{val|274877906944}}}} = {{0|−}}{{val|0.03795781}}…
11332{{sfrac|5|8}} = {{0|−}}{{val|0.62500000}}…
11342−{{sfrac|3|16}} = −{{val|0.18750000}}…
313112{{sfrac|149|2048}} = {{0|−}}{{val|0.07275391}}…
713262−{{sfrac|{{val|4360347}}|{{val|67108864}}}} = −{{val|0.06497423}}…
1013372{{sfrac|{{val|419538377}}|{{val|137438953472}}}} = {{0|−}}{{val|0.00305254}}…
11742{{sfrac|1|16}} = {{0|−}}{{val|0.06250000}}…
11942{{sfrac|3|16}} = {{0|−}}{{val|0.18750000}}…
419172−{{sfrac|751|{{val|131072}}}} = −{{val|0.00572968}}…
12342{{sfrac|7|16}} = {{0|−}}{{val|0.43750000}}…
12352−{{sfrac|9|32}} = −{{val|0.28125000}}…
22392{{sfrac|17|512}} = {{0|−}}{{val|0.03320312}}…
12942{{sfrac|13|16}} = {{0|−}}{{val|0.81250000}}…
12952−{{sfrac|3|32}} = −{{val|0.09375000}}…
729342{{sfrac|{{val|70007125}}|{{val|17179869184}}}} = {{0|−}}{{val|0.00407495}}…
13152−{{sfrac|1|32}} = −{{val|0.03125000}}…
13752{{sfrac|5|32}} = {{0|−}}{{val|0.15625000}}…
437212−{{sfrac|{{val|222991}}|{{val|2097152}}}} = −{{val|0.10633039}}…
537262{{sfrac|{{val|2235093}}|{{val|67108864}}}} = {{0|−}}{{val|0.03330548}}…
14152{{sfrac|9|32}} = {{0|−}}{{val|0.28125000}}…
241112−{{sfrac|367|2048}} = −{{val|0.17919922}}…
341162{{sfrac|3385|{{val|65536}}}} = {{0|−}}{{val|0.05165100}}…
14352{{sfrac|11|32}} = {{0|−}}{{val|0.34375000}}…
243112−{{sfrac|199|2048}} = −{{val|0.09716797}}…
543272{{sfrac|{{val|12790715}}|{{val|134217728}}}} = {{0|−}}{{val|0.09529825}}…
743382−{{sfrac|{{val|3059295837}}|{{val|274877906944}}}} = −{{val|0.01112965}}…

Starting from the natural logarithm of {{math|q {{=}} 10}} one might use these parameters:

class="wikitable sortable" style="text-align: right"

! {{math|s}}!!{{math|p}}!!{{math|t}}!!{{math|q}}!!{{math|{{sfrac|d|q{{sup|t}}}}}}

102310{{sfrac|3|125}} = {{0|−}}{{val|0.02400000}}…
2131010{{sfrac|{{val|460353203}}|{{val|10000000000}}}} = {{0|−}}{{val|0.04603532}}…
35210{{sfrac|1|4}} = {{0|−}}{{val|0.25000000}}…
105710−{{sfrac|3|128}} = −{{val|0.02343750}}…
67510{{sfrac|{{val|17649}}|{{val|100000}}}} = {{0|−}}{{val|0.17649000}}…
1371110−{{sfrac|{{val|3110989593}}|{{val|100000000000}}}} = −{{val|0.03110990}}…
111110{{sfrac|1|10}} = {{0|−}}{{val|0.10000000}}…
113110{{sfrac|3|10}} = {{0|−}}{{val|0.30000000}}…
813910−{{sfrac|{{val|184269279}}|{{val|1000000000}}}} = −{{val|0.18426928}}…
9131010{{sfrac|{{val|604499373}}|{{val|10000000000}}}} = {{0|−}}{{val|0.06044994}}…
117110{{sfrac|7|10}} = {{0|−}}{{val|0.70000000}}…
417510−{{sfrac|{{val|16479}}|{{val|100000}}}} = −{{val|0.16479000}}…
9171110{{sfrac|{{val|18587876497}}|{{val|100000000000}}}} = {{0|−}}{{val|0.18587876}}…
319410−{{sfrac|3141|{{val|10000}}}} = −{{val|0.31410000}}…
419510{{sfrac|{{val|30321}}|{{val|100000}}}} = {{0|−}}{{val|0.30321000}}…
719910−{{sfrac|{{val|106128261}}|{{val|1000000000}}}} = −{{val|0.10612826}}…
223310−{{sfrac|471|1000}} = −{{val|0.47100000}}…
323410{{sfrac|2167|{{val|10000}}}} = {{0|−}}{{val|0.21670000}}…
229310−{{sfrac|159|1000}} = −{{val|0.15900000}}…
231310−{{sfrac|39|1000}} = −{{val|0.03900000}}…

Known digits

This is a table of recent records in calculating digits of {{math|ln 2}}. As of December 2018, it has been calculated to more digits than any other natural logarithm{{cite web|url=http://www.numberworld.org/y-cruncher/|title=y-cruncher|author=|date=|work=numberworld.org|accessdate=10 December 2018}}{{cite web|url=http://www.numberworld.org/digits/Log(2)/|title=Natural log of 2|author=|date=|work=numberworld.org|accessdate=10 December 2018}} of a natural number, except that of 1.

class="wikitable"
DateNameNumber of digits
January 7, 2009A.Yee & R.Chan15,500,000,000
February 4, 2009A.Yee & R.Chan31,026,000,000
February 21, 2011Alexander Yee50,000,000,050
May 14, 2011Shigeru Kondo100,000,000,000
February 28, 2014Shigeru Kondo200,000,000,050
July 12, 2015Ron Watkins250,000,000,000
January 30, 2016Ron Watkins350,000,000,000
April 18, 2016Ron Watkins500,000,000,000
December 10, 2018Michael Kwok600,000,000,000
April 26, 2019Jacob Riffee1,000,000,000,000
August 19, 2020Seungmin Kim{{Cite web|url=http://www.numberworld.org/y-cruncher/|title=Records set by y-cruncher|archive-url=https://web.archive.org/web/20200915070251/http://www.numberworld.org/y-cruncher/|access-date=September 15, 2020|archive-date=2020-09-15}}{{Cite web|url=https://ehfd.github.io/world-record/natural-logarithm-of-2-log2/|title=Natural logarithm of 2 (Log(2)) world record by Seungmin Kim|date=19 August 2020|access-date=September 15, 2020}}1,200,000,000,100
September 9, 2021William Echols{{Cite web|url=https://williamechols.com/log2/|title=William Echols|access-date=March 15, 2025}}1,500,000,000,000
February 12, 2024Jordan Ranous{{Cite web|url=http://www.numberworld.org/y-cruncher/records.html|title=Records set by y-cruncher|access-date=March 15, 2025}}3,000,000,000,000

See also

References

  • {{cite journal

|first1=Richard P.

|last1=Brent

|title=Fast multiple-precision evaluation of elementary functions

|journal=J. ACM

|volume=23

|issue=2

|year=1976

|pages=242–251

|doi=10.1145/321941.321944

|mr=0395314

|s2cid=6761843

|doi-access=free

}}

  • {{cite journal

|first1=Horace S.

|last1=Uhler

|title=Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17

|journal=Proc. Natl. Acad. Sci. U.S.A.

|volume=26

|issue=3

|year=1940

|pages=205–212

|mr=0001523

|doi=10.1073/pnas.26.3.205

|pmc=1078033

|pmid=16588339

|bibcode=1940PNAS...26..205U

|doi-access=free

}}

  • {{cite journal

|first1=Dura W.

|last1=Sweeney

|title=On the computation of Euler's constant

|journal=Mathematics of Computation

|year=1963

|volume=17

|issue=82

|pages=170–178

|doi=10.1090/S0025-5718-1963-0160308-X

|mr=0160308

|doi-access=free

}}

  • {{cite journal

|first1=Marc

|last1=Chamberland

|title=Binary BBP-formulae for logarithms and generalized Gaussian–Mersenne primes

|journal=Journal of Integer Sequences

|url=http://www.emis.de/journals/JIS/VOL6/Chamberland/chamberland60.pdf

|volume=6

|page=03.3.7

|year=2003

|bibcode=2003JIntS...6...37C

|mr=2046407

|access-date=2010-04-29

|archive-url=https://web.archive.org/web/20110606014342/http://www.emis.de/journals/JIS/VOL6/Chamberland/chamberland60.pdf

|archive-date=2011-06-06

|url-status=dead

}}

  • {{cite journal

|first1=Boris

|last1=Gourévitch

|first2=Jesús

|last2=Guillera Goyanes

|title=Construction of binomial sums for {{pi}} and polylogarithmic constants inspired by BBP formulas

|journal=Applied Math. E-Notes

|volume=7

|year=2007

|url=http://www.math.nthu.edu.tw/~amen/2007/061028-2.pdf

|mr=2346048

|pages=237–246}}

  • {{cite journal

|first1=Qiang

|last1=Wu

|title=On the linear independence measure of logarithms of rational numbers

|journal=Mathematics of Computation

|volume=72

|issue=242

|pages=901–911

|doi=10.1090/S0025-5718-02-01442-4

|year=2003

|doi-access=free

}}

{{reflist}}