Table of prime factors
{{pp-sock|small=yes}}
{{Short description|none}}
The tables contain the prime factorization of the natural numbers from 1 to 1000.
When n is a prime number, the prime factorization is just n itself, written in bold below.
The number 1 is called a unit. It has no prime factors and is neither prime nor composite.
Properties
Many properties of a natural number n can be seen or directly computed from the prime factorization of n.
- The multiplicity of a prime factor p of n is the largest exponent m for which pm divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p1). The multiplicity of a prime which does not divide n may be called 0 or may be considered undefined.
- Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities).
- A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 {{OEIS|id=A000040}}. There are many special types of prime numbers.
- A composite number has Ω(n) > 1. The first: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21 {{OEIS|id=A002808}}. All numbers above 1 are either prime or composite. 1 is neither.
- A semiprime has Ω(n) = 2 (so it is composite). The first: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34 {{OEIS|id=A001358}}.
- A k-almost prime (for a natural number k) has Ω(n) = k (so it is composite if k > 1).
- An even number has the prime factor 2. The first: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 {{OEIS|id=A005843}}.
- An odd number does not have the prime factor 2. The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 {{OEIS|id=A005408}}. All integers are either even or odd.
- A square has even multiplicity for all prime factors (it is of the form a2 for some a). The first: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144 {{OEIS|id=A000290}}.
- A cube has all multiplicities divisible by 3 (it is of the form a3 for some a). The first: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728 {{OEIS|id=A000578}}.
- A perfect power has a common divisor m > 1 for all multiplicities (it is of the form am for some a > 1 and m > 1). The first: 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100 {{OEIS|id=A001597}}. 1 is sometimes included.
- A powerful number (also called squareful) has multiplicity above 1 for all prime factors. The first: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72 {{OEIS|id=A001694}}.
- A prime power has only one prime factor. The first: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19 {{OEIS|id=A000961}}. 1 is sometimes included.
- An Achilles number is powerful but not a perfect power. The first: 72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968 {{OEIS|id=A052486}}.
- A square-free integer has no prime factor with multiplicity above 1. The first: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17 {{OEIS|id=A005117}}. A number where some but not all prime factors have multiplicity above 1 is neither square-free nor squareful.
- The Liouville function λ(n) is 1 if Ω(n) is even, and is -1 if Ω(n) is odd.
- The Möbius function μ(n) is 0 if n is not square-free. Otherwise μ(n) is 1 if Ω(n) is even, and is −1 if Ω(n) is odd.
- A sphenic number has Ω(n) = 3 and is square-free (so it is the product of 3 distinct primes). The first: 30, 42, 66, 70, 78, 102, 105, 110, 114, 130, 138, 154 {{OEIS|id=A007304}}.
- a0(n) is the sum of primes dividing n, counted with multiplicity. It is an additive function.
- A Ruth-Aaron pair is two consecutive numbers (x, x+1) with a0(x) = a0(x+1). The first (by x value): 5, 8, 15, 77, 125, 714, 948, 1330, 1520, 1862, 2491, 3248 {{OEIS|id=A039752}}. Another definition is where the same prime is only counted once; if so, the first (by x value): 5, 24, 49, 77, 104, 153, 369, 492, 714, 1682, 2107, 2299 {{OEIS|id=A006145}}.
- A primorial x# is the product of all primes from 2 to x. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 {{OEIS|id=A002110}}. 1# = 1 is sometimes included.
- A factorial x! is the product of all numbers from 1 to x. The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 {{OEIS|id=A000142}}. 0! = 1 is sometimes included.
- A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k).
- m is smoother than n if the largest prime factor of m is below the largest of n.
- A regular number has no prime factor above 5 (so it is 5-smooth). The first: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16 {{OEIS|id=A051037}}.
- A k-powersmooth number has all pm ≤ k where p is a prime factor with multiplicity m.
- A frugal number has more digits than the number of digits in its prime factorization (when written like the tables below with multiplicities above 1 as exponents). The first in decimal: 125, 128, 243, 256, 343, 512, 625, 729, 1024, 1029, 1215, 1250 {{OEIS|id=A046759}}.
- An equidigital number has the same number of digits as its prime factorization. The first in decimal: 1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17 {{OEIS|id=A046758}}.
- An extravagant number has fewer digits than its prime factorization. The first in decimal: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30 {{OEIS|id=A046760}}.
- An economical number has been defined as a frugal number, but also as a number that is either frugal or equidigital.
- gcd(m, n) (greatest common divisor of m and n) is the product of all prime factors which are both in m and n (with the smallest multiplicity for m and n).
- m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor).
- lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n).
- gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.
- m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n.
The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors).
The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them.
Divisors and properties related to divisors are shown in table of divisors.
1 to 100
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 1–20 | |
1 | |
2 | 2 |
3 | 3 |
4 | 22 |
5 | 5 |
6 | 2·3 |
7 | 7 |
8 | 23 |
9 | 32 |
10 | 2·5 |
11 | 11 |
12 | 22·3 |
13 | 13 |
14 | 2·7 |
15 | 3·5 |
16 | 24 |
17 | 17 |
18 | 2·32 |
19 | 19 |
20 | 22·5 |
|
class="wikitable"
|+ 21–40 | |
21 | 3·7 |
22 | 2·11 |
23 | 23 |
24 | 23·3 |
25 | 52 |
26 | 2·13 |
27 | 33 |
28 | 22·7 |
29 | 29 |
30 | 2·3·5 |
31 | 31 |
32 | 25 |
33 | 3·11 |
34 | 2·17 |
35 | 5·7 |
36 | 22·32 |
37 | 37 |
38 | 2·19 |
39 | 3·13 |
40 | 23·5 |
|
class="wikitable"
|+ 41–60 | |
41 | 41 |
42 | 2·3·7 |
43 | 43 |
44 | 22·11 |
45 | 32·5 |
46 | 2·23 |
47 | 47 |
48 | 24·3 |
49 | 72 |
50 | 2·52 |
51 | 3·17 |
52 | 22·13 |
53 | 53 |
54 | 2·33 |
55 | 5·11 |
56 | 23·7 |
57 | 3·19 |
58 | 2·29 |
59 | 59 |
60 | 22·3·5 |
|
class="wikitable"
|+ 61–80 | |
61 | 61 |
62 | 2·31 |
63 | 32·7 |
64 | 26 |
65 | 5·13 |
66 | 2·3·11 |
67 | 67 |
68 | 22·17 |
69 | 3·23 |
70 | 2·5·7 |
71 | 71 |
72 | 23·32 |
73 | 73 |
74 | 2·37 |
75 | 3·52 |
76 | 22·19 |
77 | 7·11 |
78 | 2·3·13 |
79 | 79 |
80 | 24·5 |
|
class="wikitable"
|+ 81–100 | |
81 | 34 |
82 | 2·41 |
83 | 83 |
84 | 22·3·7 |
85 | 5·17 |
86 | 2·43 |
87 | 3·29 |
88 | 23·11 |
89 | 89 |
90 | 2·32·5 |
91 | 7·13 |
92 | 22·23 |
93 | 3·31 |
94 | 2·47 |
95 | 5·19 |
96 | 25·3 |
97 | 97 |
98 | 2·72 |
99 | 32·11 |
100 | 22·52 |
|}
101 to 200
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 101–120 | |
101 | 101 |
102 | 2·3·17 |
103 | 103 |
104 | 23·13 |
105 | 3·5·7 |
106 | 2·53 |
107 | 107 |
108 | 22·33 |
109 | 109 |
110 | 2·5·11 |
111 | 3·37 |
112 | 24·7 |
113 | 113 |
114 | 2·3·19 |
115 | 5·23 |
116 | 22·29 |
117 | 32·13 |
118 | 2·59 |
119 | 7·17 |
120 | 23·3·5 |
|
class="wikitable"
|+ 121–140 | |
121 | 112 |
122 | 2·61 |
123 | 3·41 |
124 | 22·31 |
125 | 53 |
126 | 2·32·7 |
127 | 127 |
128 | 27 |
129 | 3·43 |
130 | 2·5·13 |
131 | 131 |
132 | 22·3·11 |
133 | 7·19 |
134 | 2·67 |
135 | 33·5 |
136 | 23·17 |
137 | 137 |
138 | 2·3·23 |
139 | 139 |
140 | 22·5·7 |
|
class="wikitable"
|+ 141–160 | |
141 | 3·47 |
142 | 2·71 |
143 | 11·13 |
144 | 24·32 |
145 | 5·29 |
146 | 2·73 |
147 | 3·72 |
148 | 22·37 |
149 | 149 |
150 | 2·3·52 |
151 | 151 |
152 | 23·19 |
153 | 32·17 |
154 | 2·7·11 |
155 | 5·31 |
156 | 22·3·13 |
157 | 157 |
158 | 2·79 |
159 | 3·53 |
160 | 25·5 |
|
class="wikitable"
|+ 161–180 | |
161 | 7·23 |
162 | 2·34 |
163 | 163 |
164 | 22·41 |
165 | 3·5·11 |
166 | 2·83 |
167 | 167 |
168 | 23·3·7 |
169 | 132 |
170 | 2·5·17 |
171 | 32·19 |
172 | 22·43 |
173 | 173 |
174 | 2·3·29 |
175 | 52·7 |
176 | 24·11 |
177 | 3·59 |
178 | 2·89 |
179 | 179 |
180 | 22·32·5 |
|
class="wikitable"
|+ 181–200 | |
181 | 181 |
182 | 2·7·13 |
183 | 3·61 |
184 | 23·23 |
185 | 5·37 |
186 | 2·3·31 |
187 | 11·17 |
188 | 22·47 |
189 | 33·7 |
190 | 2·5·19 |
191 | 191 |
192 | 26·3 |
193 | 193 |
194 | 2·97 |
195 | 3·5·13 |
196 | 22·72 |
197 | 197 |
198 | 2·32·11 |
199 | 199 |
200 | 23·52 |
|}
201 to 300
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 201–220 | |
201 | 3·67 |
202 | 2·101 |
203 | 7·29 |
204 | 22·3·17 |
205 | 5·41 |
206 | 2·103 |
207 | 32·23 |
208 | 24·13 |
209 | 11·19 |
210 | 2·3·5·7 |
211 | 211 |
212 | 22·53 |
213 | 3·71 |
214 | 2·107 |
215 | 5·43 |
216 | 23·33 |
217 | 7·31 |
218 | 2·109 |
219 | 3·73 |
220 | 22·5·11 |
|
class="wikitable"
|+ 221–240 | |
221 | 13·17 |
222 | 2·3·37 |
223 | 223 |
224 | 25·7 |
225 | 32·52 |
226 | 2·113 |
227 | 227 |
228 | 22·3·19 |
229 | 229 |
230 | 2·5·23 |
231 | 3·7·11 |
232 | 23·29 |
233 | 233 |
234 | 2·32·13 |
235 | 5·47 |
236 | 22·59 |
237 | 3·79 |
238 | 2·7·17 |
239 | 239 |
240 | 24·3·5 |
|
class="wikitable"
|+ 241–260 | |
241 | 241 |
242 | 2·112 |
243 | 35 |
244 | 22·61 |
245 | 5·72 |
246 | 2·3·41 |
247 | 13·19 |
248 | 23·31 |
249 | 3·83 |
250 | 2·53 |
251 | 251 |
252 | 22·32·7 |
253 | 11·23 |
254 | 2·127 |
255 | 3·5·17 |
256 | 28 |
257 | 257 |
258 | 2·3·43 |
259 | 7·37 |
260 | 22·5·13 |
|
class="wikitable"
|+ 261–280 | |
261 | 32·29 |
262 | 2·131 |
263 | 263 |
264 | 23·3·11 |
265 | 5·53 |
266 | 2·7·19 |
267 | 3·89 |
268 | 22·67 |
269 | 269 |
270 | 2·33·5 |
271 | 271 |
272 | 24·17 |
273 | 3·7·13 |
274 | 2·137 |
275 | 52·11 |
276 | 22·3·23 |
277 | 277 |
278 | 2·139 |
279 | 32·31 |
280 | 23·5·7 |
|
class="wikitable"
|+ 281–300 | |
281 | 281 |
282 | 2·3·47 |
283 | 283 |
284 | 22·71 |
285 | 3·5·19 |
286 | 2·11·13 |
287 | 7·41 |
288 | 25·32 |
289 | 172 |
290 | 2·5·29 |
291 | 3·97 |
292 | 22·73 |
293 | 293 |
294 | 2·3·72 |
295 | 5·59 |
296 | 23·37 |
297 | 33·11 |
298 | 2·149 |
299 | 13·23 |
300 | 22·3·52 |
|}
301 to 400
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 301–320 | |
301 | 7·43 |
302 | 2·151 |
303 | 3·101 |
304 | 24·19 |
305 | 5·61 |
306 | 2·32·17 |
307 | 307 |
308 | 22·7·11 |
309 | 3·103 |
310 | 2·5·31 |
311 | 311 |
312 | 23·3·13 |
313 | 313 |
314 | 2·157 |
315 | 32·5·7 |
316 | 22·79 |
317 | 317 |
318 | 2·3·53 |
319 | 11·29 |
320 | 26·5 |
|
class="wikitable"
|+ 321–340 | |
321 | 3·107 |
322 | 2·7·23 |
323 | 17·19 |
324 | 22·34 |
325 | 52·13 |
326 | 2·163 |
327 | 3·109 |
328 | 23·41 |
329 | 7·47 |
330 | 2·3·5·11 |
331 | 331 |
332 | 22·83 |
333 | 32·37 |
334 | 2·167 |
335 | 5·67 |
336 | 24·3·7 |
337 | 337 |
338 | 2·132 |
339 | 3·113 |
340 | 22·5·17 |
|
class="wikitable"
|+ 341–360 | |
341 | 11·31 |
342 | 2·32·19 |
343 | 73 |
344 | 23·43 |
345 | 3·5·23 |
346 | 2·173 |
347 | 347 |
348 | 22·3·29 |
349 | 349 |
350 | 2·52·7 |
351 | 33·13 |
352 | 25·11 |
353 | 353 |
354 | 2·3·59 |
355 | 5·71 |
356 | 22·89 |
357 | 3·7·17 |
358 | 2·179 |
359 | 359 |
360 | 23·32·5 |
|
class="wikitable"
|+ 361–380 | |
361 | 192 |
362 | 2·181 |
363 | 3·112 |
364 | 22·7·13 |
365 | 5·73 |
366 | 2·3·61 |
367 | 367 |
368 | 24·23 |
369 | 32·41 |
370 | 2·5·37 |
371 | 7·53 |
372 | 22·3·31 |
373 | 373 |
374 | 2·11·17 |
375 | 3·53 |
376 | 23·47 |
377 | 13·29 |
378 | 2·33·7 |
379 | 379 |
380 | 22·5·19 |
|
class="wikitable"
|+ 381–400 | |
381 | 3·127 |
382 | 2·191 |
383 | 383 |
384 | 27·3 |
385 | 5·7·11 |
386 | 2·193 |
387 | 32·43 |
388 | 22·97 |
389 | 389 |
390 | 2·3·5·13 |
391 | 17·23 |
392 | 23·72 |
393 | 3·131 |
394 | 2·197 |
395 | 5·79 |
396 | 22·32·11 |
397 | 397 |
398 | 2·199 |
399 | 3·7·19 |
400 | 24·52 |
|}
401 to 500
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 401–420 | |
401 | 401 |
402 | 2·3·67 |
403 | 13·31 |
404 | 22·101 |
405 | 34·5 |
406 | 2·7·29 |
407 | 11·37 |
408 | 23·3·17 |
409 | 409 |
410 | 2·5·41 |
411 | 3·137 |
412 | 22·103 |
413 | 7·59 |
414 | 2·32·23 |
415 | 5·83 |
416 | 25·13 |
417 | 3·139 |
418 | 2·11·19 |
419 | 419 |
420 | 22·3·5·7 |
|
class="wikitable"
|+ 421–440 | |
421 | 421 |
422 | 2·211 |
423 | 32·47 |
424 | 23·53 |
425 | 52·17 |
426 | 2·3·71 |
427 | 7·61 |
428 | 22·107 |
429 | 3·11·13 |
430 | 2·5·43 |
431 | 431 |
432 | 24·33 |
433 | 433 |
434 | 2·7·31 |
435 | 3·5·29 |
436 | 22·109 |
437 | 19·23 |
438 | 2·3·73 |
439 | 439 |
440 | 23·5·11 |
|
class="wikitable"
|+ 441–460 | |
441 | 32·72 |
442 | 2·13·17 |
443 | 443 |
444 | 22·3·37 |
445 | 5·89 |
446 | 2·223 |
447 | 3·149 |
448 | 26·7 |
449 | 449 |
450 | 2·32·52 |
451 | 11·41 |
452 | 22·113 |
453 | 3·151 |
454 | 2·227 |
455 | 5·7·13 |
456 | 23·3·19 |
457 | 457 |
458 | 2·229 |
459 | 33·17 |
460 | 22·5·23 |
|
class="wikitable"
|+ 461–480 | |
461 | 461 |
462 | 2·3·7·11 |
463 | 463 |
464 | 24·29 |
465 | 3·5·31 |
466 | 2·233 |
467 | 467 |
468 | 22·32·13 |
469 | 7·67 |
470 | 2·5·47 |
471 | 3·157 |
472 | 23·59 |
473 | 11·43 |
474 | 2·3·79 |
475 | 52·19 |
476 | 22·7·17 |
477 | 32·53 |
478 | 2·239 |
479 | 479 |
480 | 25·3·5 |
|
class="wikitable"
|+ 481–500 | |
481 | 13·37 |
482 | 2·241 |
483 | 3·7·23 |
484 | 22·112 |
485 | 5·97 |
486 | 2·35 |
487 | 487 |
488 | 23·61 |
489 | 3·163 |
490 | 2·5·72 |
491 | 491 |
492 | 22·3·41 |
493 | 17·29 |
494 | 2·13·19 |
495 | 32·5·11 |
496 | 24·31 |
497 | 7·71 |
498 | 2·3·83 |
499 | 499 |
500 | 22·53 |
|}
501 to 600
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 501–520 | |
501 | 3·167 |
502 | 2·251 |
503 | 503 |
504 | 23·32·7 |
505 | 5·101 |
506 | 2·11·23 |
507 | 3·132 |
508 | 22·127 |
509 | 509 |
510 | 2·3·5·17 |
511 | 7·73 |
512 | 29 |
513 | 33·19 |
514 | 2·257 |
515 | 5·103 |
516 | 22·3·43 |
517 | 11·47 |
518 | 2·7·37 |
519 | 3·173 |
520 | 23·5·13 |
|
class="wikitable"
|+ 521–540 | |
521 | 521 |
522 | 2·32·29 |
523 | 523 |
524 | 22·131 |
525 | 3·52·7 |
526 | 2·263 |
527 | 17·31 |
528 | 24·3·11 |
529 | 232 |
530 | 2·5·53 |
531 | 32·59 |
532 | 22·7·19 |
533 | 13·41 |
534 | 2·3·89 |
535 | 5·107 |
536 | 23·67 |
537 | 3·179 |
538 | 2·269 |
539 | 72·11 |
540 | 22·33·5 |
|
class="wikitable"
|+ 541–560 | |
541 | 541 |
542 | 2·271 |
543 | 3·181 |
544 | 25·17 |
545 | 5·109 |
546 | 2·3·7·13 |
547 | 547 |
548 | 22·137 |
549 | 32·61 |
550 | 2·52·11 |
551 | 19·29 |
552 | 23·3·23 |
553 | 7·79 |
554 | 2·277 |
555 | 3·5·37 |
556 | 22·139 |
557 | 557 |
558 | 2·32·31 |
559 | 13·43 |
560 | 24·5·7 |
|
class="wikitable"
|+ 561–580 | |
561 | 3·11·17 |
562 | 2·281 |
563 | 563 |
564 | 22·3·47 |
565 | 5·113 |
566 | 2·283 |
567 | 34·7 |
568 | 23·71 |
569 | 569 |
570 | 2·3·5·19 |
571 | 571 |
572 | 22·11·13 |
573 | 3·191 |
574 | 2·7·41 |
575 | 52·23 |
576 | 26·32 |
577 | 577 |
578 | 2·172 |
579 | 3·193 |
580 | 22·5·29 |
|
class="wikitable"
|+ 581–600 | |
581 | 7·83 |
582 | 2·3·97 |
583 | 11·53 |
584 | 23·73 |
585 | 32·5·13 |
586 | 2·293 |
587 | 587 |
588 | 22·3·72 |
589 | 19·31 |
590 | 2·5·59 |
591 | 3·197 |
592 | 24·37 |
593 | 593 |
594 | 2·33·11 |
595 | 5·7·17 |
596 | 22·149 |
597 | 3·199 |
598 | 2·13·23 |
599 | 599 |
600 | 23·3·52 |
|}
601 to 700
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 601–620 | |
601 | 601 |
602 | 2·7·43 |
603 | 32·67 |
604 | 22·151 |
605 | 5·112 |
606 | 2·3·101 |
607 | 607 |
608 | 25·19 |
609 | 3·7·29 |
610 | 2·5·61 |
611 | 13·47 |
612 | 22·32·17 |
613 | 613 |
614 | 2·307 |
615 | 3·5·41 |
616 | 23·7·11 |
617 | 617 |
618 | 2·3·103 |
619 | 619 |
620 | 22·5·31 |
|
class="wikitable"
|+ 621–640 | |
621 | 33·23 |
622 | 2·311 |
623 | 7·89 |
624 | 24·3·13 |
625 | 54 |
626 | 2·313 |
627 | 3·11·19 |
628 | 22·157 |
629 | 17·37 |
630 | 2·32·5·7 |
631 | 631 |
632 | 23·79 |
633 | 3·211 |
634 | 2·317 |
635 | 5·127 |
636 | 22·3·53 |
637 | 72·13 |
638 | 2·11·29 |
639 | 32·71 |
640 | 27·5 |
|
class="wikitable"
|+ 641–660 | |
641 | 641 |
642 | 2·3·107 |
643 | 643 |
644 | 22·7·23 |
645 | 3·5·43 |
646 | 2·17·19 |
647 | 647 |
648 | 23·34 |
649 | 11·59 |
650 | 2·52·13 |
651 | 3·7·31 |
652 | 22·163 |
653 | 653 |
654 | 2·3·109 |
655 | 5·131 |
656 | 24·41 |
657 | 32·73 |
658 | 2·7·47 |
659 | 659 |
660 | 22·3·5·11 |
|
class="wikitable"
|+ 661–680 | |
661 | 661 |
662 | 2·331 |
663 | 3·13·17 |
664 | 23·83 |
665 | 5·7·19 |
666 | 2·32·37 |
667 | 23·29 |
668 | 22·167 |
669 | 3·223 |
670 | 2·5·67 |
671 | 11·61 |
672 | 25·3·7 |
673 | 673 |
674 | 2·337 |
675 | 33·52 |
676 | 22·132 |
677 | 677 |
678 | 2·3·113 |
679 | 7·97 |
680 | 23·5·17 |
|
class="wikitable"
|+ 681–700 | |
681 | 3·227 |
682 | 2·11·31 |
683 | 683 |
684 | 22·32·19 |
685 | 5·137 |
686 | 2·73 |
687 | 3·229 |
688 | 24·43 |
689 | 13·53 |
690 | 2·3·5·23 |
691 | 691 |
692 | 22·173 |
693 | 32·7·11 |
694 | 2·347 |
695 | 5·139 |
696 | 23·3·29 |
697 | 17·41 |
698 | 2·349 |
699 | 3·233 |
700 | 22·52·7 |
|}
701 to 800
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 701–720 | |
701 | 701 |
702 | 2·33·13 |
703 | 19·37 |
704 | 26·11 |
705 | 3·5·47 |
706 | 2·353 |
707 | 7·101 |
708 | 22·3·59 |
709 | 709 |
710 | 2·5·71 |
711 | 32·79 |
712 | 23·89 |
713 | 23·31 |
714 | 2·3·7·17 |
715 | 5·11·13 |
716 | 22·179 |
717 | 3·239 |
718 | 2·359 |
719 | 719 |
720 | 24·32·5 |
|
class="wikitable"
|+ 721–740 | |
721 | 7·103 |
722 | 2·192 |
723 | 3·241 |
724 | 22·181 |
725 | 52·29 |
726 | 2·3·112 |
727 | 727 |
728 | 23·7·13 |
729 | 36 |
730 | 2·5·73 |
731 | 17·43 |
732 | 22·3·61 |
733 | 733 |
734 | 2·367 |
735 | 3·5·72 |
736 | 25·23 |
737 | 11·67 |
738 | 2·32·41 |
739 | 739 |
740 | 22·5·37 |
|
class="wikitable"
|+ 741–760 | |
741 | 3·13·19 |
742 | 2·7·53 |
743 | 743 |
744 | 23·3·31 |
745 | 5·149 |
746 | 2·373 |
747 | 32·83 |
748 | 22·11·17 |
749 | 7·107 |
750 | 2·3·53 |
751 | 751 |
752 | 24·47 |
753 | 3·251 |
754 | 2·13·29 |
755 | 5·151 |
756 | 22·33·7 |
757 | 757 |
758 | 2·379 |
759 | 3·11·23 |
760 | 23·5·19 |
|
class="wikitable"
|+ 761–780 | |
761 | 761 |
762 | 2·3·127 |
763 | 7·109 |
764 | 22·191 |
765 | 32·5·17 |
766 | 2·383 |
767 | 13·59 |
768 | 28·3 |
769 | 769 |
770 | 2·5·7·11 |
771 | 3·257 |
772 | 22·193 |
773 | 773 |
774 | 2·32·43 |
775 | 52·31 |
776 | 23·97 |
777 | 3·7·37 |
778 | 2·389 |
779 | 19·41 |
780 | 22·3·5·13 |
|
class="wikitable"
|+ 781–800 | |
781 | 11·71 |
782 | 2·17·23 |
783 | 33·29 |
784 | 24·72 |
785 | 5·157 |
786 | 2·3·131 |
787 | 787 |
788 | 22·197 |
789 | 3·263 |
790 | 2·5·79 |
791 | 7·113 |
792 | 23·32·11 |
793 | 13·61 |
794 | 2·397 |
795 | 3·5·53 |
796 | 22·199 |
797 | 797 |
798 | 2·3·7·19 |
799 | 17·47 |
800 | 25·52 |
|}
801 to 900
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 801–820 | |
801 | 32·89 |
802 | 2·401 |
803 | 11·73 |
804 | 22·3·67 |
805 | 5·7·23 |
806 | 2·13·31 |
807 | 3·269 |
808 | 23·101 |
809 | 809 |
810 | 2·34·5 |
811 | 811 |
812 | 22·7·29 |
813 | 3·271 |
814 | 2·11·37 |
815 | 5·163 |
816 | 24·3·17 |
817 | 19·43 |
818 | 2·409 |
819 | 32·7·13 |
820 | 22·5·41 |
|
class="wikitable"
|+ 821–840 | |
821 | 821 |
822 | 2·3·137 |
823 | 823 |
824 | 23·103 |
825 | 3·52·11 |
826 | 2·7·59 |
827 | 827 |
828 | 22·32·23 |
829 | 829 |
830 | 2·5·83 |
831 | 3·277 |
832 | 26·13 |
833 | 72·17 |
834 | 2·3·139 |
835 | 5·167 |
836 | 22·11·19 |
837 | 33·31 |
838 | 2·419 |
839 | 839 |
840 | 23·3·5·7 |
|
class="wikitable"
|+ 841–860 | |
841 | 292 |
842 | 2·421 |
843 | 3·281 |
844 | 22·211 |
845 | 5·132 |
846 | 2·32·47 |
847 | 7·112 |
848 | 24·53 |
849 | 3·283 |
850 | 2·52·17 |
851 | 23·37 |
852 | 22·3·71 |
853 | 853 |
854 | 2·7·61 |
855 | 32·5·19 |
856 | 23·107 |
857 | 857 |
858 | 2·3·11·13 |
859 | 859 |
860 | 22·5·43 |
|
class="wikitable"
|+ 861 - 880 | |
861 | 3·7·41 |
862 | 2·431 |
863 | 863 |
864 | 25·33 |
865 | 5·173 |
866 | 2·433 |
867 | 3·172 |
868 | 22·7·31 |
869 | 11·79 |
870 | 2·3·5·29 |
871 | 13·67 |
872 | 23·109 |
873 | 32·97 |
874 | 2·19·23 |
875 | 53·7 |
876 | 22·3·73 |
877 | 877 |
878 | 2·439 |
879 | 3·293 |
880 | 24·5·11 |
|
class="wikitable"
|+ 881–900 | |
881 | 881 |
882 | 2·32·72 |
883 | 883 |
884 | 22·13·17 |
885 | 3·5·59 |
886 | 2·443 |
887 | 887 |
888 | 23·3·37 |
889 | 7·127 |
890 | 2·5·89 |
891 | 34·11 |
892 | 22·223 |
893 | 19·47 |
894 | 2·3·149 |
895 | 5·179 |
896 | 27·7 |
897 | 3·13·23 |
898 | 2·449 |
899 | 29·31 |
900 | 22·32·52 |
|}
901 to 1000
border="0" cellpadding="3" cellspacing="0"
| {| class="wikitable" |+ 901–920 | |
901 | 17·53 |
902 | 2·11·41 |
903 | 3·7·43 |
904 | 23·113 |
905 | 5·181 |
906 | 2·3·151 |
907 | 907 |
908 | 22·227 |
909 | 32·101 |
910 | 2·5·7·13 |
911 | 911 |
912 | 24·3·19 |
913 | 11·83 |
914 | 2·457 |
915 | 3·5·61 |
916 | 22·229 |
917 | 7·131 |
918 | 2·33·17 |
919 | 919 |
920 | 23·5·23 |
|
class="wikitable"
|+ 921 - 940 | |
921 | 3·307 |
922 | 2·461 |
923 | 13·71 |
924 | 22·3·7·11 |
925 | 52·37 |
926 | 2·463 |
927 | 32·103 |
928 | 25·29 |
929 | 929 |
930 | 2·3·5·31 |
931 | 72·19 |
932 | 22·233 |
933 | 3·311 |
934 | 2·467 |
935 | 5·11·17 |
936 | 23·32·13 |
937 | 937 |
938 | 2·7·67 |
939 | 3·313 |
940 | 22·5·47 |
|
class="wikitable"
|+ 941–960 | |
941 | 941 |
942 | 2·3·157 |
943 | 23·41 |
944 | 24·59 |
945 | 33·5·7 |
946 | 2·11·43 |
947 | 947 |
948 | 22·3·79 |
949 | 13·73 |
950 | 2·52·19 |
951 | 3·317 |
952 | 23·7·17 |
953 | 953 |
954 | 2·32·53 |
955 | 5·191 |
956 | 22·239 |
957 | 3·11·29 |
958 | 2·479 |
959 | 7·137 |
960 | 26·3·5 |
|
class="wikitable"
|+ 961–980 | |
961 | 312 |
962 | 2·13·37 |
963 | 32·107 |
964 | 22·241 |
965 | 5·193 |
966 | 2·3·7·23 |
967 | 967 |
968 | 23·112 |
969 | 3·17·19 |
970 | 2·5·97 |
971 | 971 |
972 | 22·35 |
973 | 7·139 |
974 | 2·487 |
975 | 3·52·13 |
976 | 24·61 |
977 | 977 |
978 | 2·3·163 |
979 | 11·89 |
980 | 22·5·72 |
|
class="wikitable"
|+ 981–1000 | |
981 | 32·109 |
982 | 2·491 |
983 | 983 |
984 | 23·3·41 |
985 | 5·197 |
986 | 2·17·29 |
987 | 3·7·47 |
988 | 22·13·19 |
989 | 23·43 |
990 | 2·32·5·11 |
991 | 991 |
992 | 25·31 |
993 | 3·331 |
994 | 2·7·71 |
995 | 5·199 |
996 | 22·3·83 |
997 | 997 |
998 | 2·499 |
999 | 33·37 |
1000 | 23·53 |
|}
See also
- {{annotated link|Fundamental theorem of arithmetic}}
- {{annotated link|List of prime numbers}}
- {{annotated link|Table of divisors}}
{{DEFAULTSORT:Prime factors}}
Category:Elementary number theory