Optimized effective potential method

{{Short description|Quantum-mechanical framework for simulating molecules and solids}}

{{Multiple issues|

{{more citations needed|date=March 2025}}

{{Sources exist|date=March 2025}}

}}

{{Electronic structure methods}}

The optimized effective potential method (OEP){{cite journal|doi=10.1103/PhysRevB.68.035103|title=Optimized effective potential made simple: Orbital functionals, orbital shifts, and the exact Kohn-Sham exchange potential|year=2003|last1=Kümmel|first1=S.|last2=Perdew|first2=J. P.|journal=Physical Review B|volume=68|issue=3 |pages=035103|arxiv=cond-mat/0303396|bibcode=2003PhRvB..68c5103K }}{{cite journal|doi=10.1103/PhysRevA.45.101|title=Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory|year=1992|last1=Krieger|first1=J. B.|last2=Li|first2=Y.|last3=Iafrate|first3=G. J.|journal=Physical Review A|volume=45|issue=1 |pages=101–126|pmid=9906704 |bibcode=1992PhRvA..45..101K }} in Kohn-Sham (KS) density functional theory (DFT){{cite journal|doi=10.1103/PhysRev.136.B864|title=Inhomogeneous Electron Gas|year=1964|last1=Hohenberg|first1=P.|last2=Kohn|first2=W.|journal=Physical Review|volume=136|issue=3B|pages=B864|bibcode = 1964PhRv..136..864H |doi-access=free}}{{Cite journal|doi=10.1103/PhysRev.140.A1133|title=Self-Consistent Equations Including Exchange and Correlation Effects|year=1965|last1=Kohn|first1=W.|last2=Sham|first2=L. J.|journal=Physical Review|volume=140|issue=4A|pages=A1133|bibcode = 1965PhRv..140.1133K |doi-access=free}} is a method to determine the potentials as functional derivatives of the corresponding KS orbital-dependent energy density functionals. This can be in principle done for any arbitrary orbital-dependent functional,{{cite journal|author1=Smiga, S.|author2=Siecinska, S.|author3=Fabiana, E.|title=Methods to generate reference total Pauli and kinetic potentials|journal=Physical Review B|volume=101|pages=165144|year=2020|doi=10.1103/PhysRevB.101.165144|arxiv=2005.03526 }} but is most common for exchange energy as the so-called exact exchange method (EXX),{{cite journal|doi=10.1103/PhysRevA.50.196|title=Exact Kohn-Sham scheme based on perturbation theory|year=1994|last1=Görling|first1=A.|last2=Levy|first2=M.|journal=Physical Review A|volume=50|issue=1 |pages=196–204|pmid=9910882 |bibcode=1994PhRvA..50..196G }}{{cite journal|doi=10.1103/PhysRevB.53.7024|title=Exact treatment of exchange in Kohn-Sham band-structure schemes|year=1995|author1=Görling A.|journal=Physical Review B|volume=53|issue=11 |pages=7024–7029|pmid=9982147 }} which will be considered here.

Origin

The OEP method was developed more than 10 years prior to the work of Pierre Hohenberg, Walter Kohn and Lu Jeu Sham in 1953 by R. T. Sharp and G. K. Horton {{cite journal|doi=10.1103/PhysRev.90.317|title=A Variational Approach to the Unipotential Many-Electron Problem|year=1953|last1=Sharp|first1=R. T.|last2=Horton|first2=G. K.|journal=Physical Review|volume=90|issue=2 |pages=317|bibcode=1953PhRv...90..317S }} in order to investigate, what happens to Hartree-Fock (HF) theory{{cite journal |first1=D. R. |last1=Hartree |author-link1=Douglas Hartree |title=The Wave Mechanics of an Atom with a Non-Coulomb Central Field |journal=Mathematical Proceedings of the Cambridge Philosophical Society |volume=24 |issue=1 |pages=111 |year=1928 |doi=10.1017/S0305004100011920 |bibcode=1928PCPS...24..111H |s2cid=121520012 }}{{cite journal |first=J. C. |last=Slater |title=The Self Consistent Field and the Structure of Atoms |journal=Physical Review |volume=32 |issue=3 |pages=339–348 |year=1928 |doi=10.1103/PhysRev.32.339 |bibcode=1928PhRv...32..339S }}{{cite journal |first=J. A. |last=Gaunt |title=A Theory of Hartree's Atomic Fields |journal=Mathematical Proceedings of the Cambridge Philosophical Society |volume=24 |issue=2 |pages=328–342 |year=1928 |doi=10.1017/S0305004100015851 |bibcode=1928PCPS...24..328G |s2cid=119685329 }}{{cite journal |first=J. C. |last=Slater |title=Note on Hartree's Method |journal=Physical Review |volume=35 |issue=2 |pages=210–211 |year=1930 |doi=10.1103/PhysRev.35.210.2 |bibcode=1930PhRv...35..210S }}{{cite journal |first=V. A. |last=Fock |title=Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems |language=de |journal=Zeitschrift für Physik |volume=61 |issue=1 |pages=126–148 |year=1930 |doi=10.1007/BF01340294 |bibcode=1930ZPhy...61..126F |s2cid=125419115 }} {{cite journal |first=V. A. |last=Fock |title="Selfconsistent field" mit Austausch für Natrium |language=de |journal=Zeitschrift für Physik |volume=62 |issue=11 |pages=795–805 |year=1930 |doi=10.1007/BF01330439 |bibcode=1930ZPhy...62..795F |s2cid=120921212 }} when, instead of the regular nonlocal exchange potential, a local exchange potential is demanded. Much later after 1990 it was found out that this ansatz is useful in density functional theory.

Background via chain rule

In density functional theory the exchange correlation (xc) potential is defined as the functional derivative of the exchange correlation (xc) energy with respect to the electron density \rho(r){{Citation needed|date=March 2025}}

{{NumBlk|:|v_{xc}(r)\equiv\frac{\delta E_{xc}[\rho]}{\delta\rho(r)}=\frac{\delta E_{xc}[\{\phi_{s}\}]}{\delta\rho(r)}|{{EquationRef|1}}}}

where the index s denotes either occupied or unoccupied KS orbitals and eigenvalues. The problem is that, although the xc energy is in principle (due to the Hohenberg-Kohn (HK) theorem) a functional of the density, its explicit dependence on the density is unknown (only known in the simple Local density approximation (LDA) case), only its implicit dependence through the KS orbitals. That motivates the use of the chain rule

v_{xc}(r)=\int dr'\sum_{s}\bigg[\frac{\delta E_{xc}[\{\phi_{s}\}]}{\delta\phi_{s}(r')}\frac{\delta\phi_{s}(r')}{\delta\rho(r)}+c.c.\bigg]

Unfortunately the functional derivative \delta\phi_{s}/\delta\rho, despite its existence, is also unknown. So one needs to invoke the chain rule once more, now with respect to the Kohn-Sham (KS) potential v_{S}(r)

v_{xc}(r)=\iint dr'dr\sum_{s}\bigg[\frac{\delta E_{xc}[\{\phi_{s}\}]}{\delta\phi_{s}(r')}\frac{\delta\phi_{s}(r')}{\delta v_{S}(r)}\underbrace{\frac{\delta v_{S}(r'')}{\delta\rho(r)}}_{\equiv X_{S}^{-1}(r,r')}+c.c.\bigg]

where X_{S}^{-1}(r,r') is defined the inverse static Kohn-Sham (KS) response function.{{Citation needed|date=March 2025|reason=You need to include one of the standard sources}}

Formalism

The KS orbital-dependent exact exchange energy (EXX) is given in Chemist's notation as

E_{x}[\{\phi_{i}\}]=-\frac{1}{2}\sum_{i}\sum_{j}(ij|ji)\equiv -\frac{1}{2}\sum_{i}\sum_{j}\iint drdr'\frac{\phi_{i}^{\dagger}(r)\phi_{j}(r)\phi_{j}^{\dagger}(r')\phi_{i}(r')}

r-r'

where r,r' denote electronic coordinates, \dagger the hermitian conjugate.The static Kohn-Sham (KS) response function is given as

{{NumBlk|:|X_{S}(r,r')\equiv\frac{\delta \rho(r)}{\delta v_{S}(r')}=\sum_{i}\sum_{a}\bigg[\frac{\phi_{i}^{\dagger}(r)\phi_{a}(r)\phi_{a}^{\dagger}(r')\phi_{i}(r')}{\varepsilon_{i}-\varepsilon_{a}}+c.c.\bigg]|{{EquationRef|2}}}}

where the indices i denote occupied and a unoccupied KS orbitals, c.c. the complex conjugate. the right hand side (r.h.s.) of the OEP equation is

{{NumBlk|:|t(r)=\frac{\delta E_{x}[\{\phi_{i}\}]}{\delta v_{S}(r)}=\sum_{i}\sum_{a}\bigg[\frac{\phi_{i}^{\dagger}(r)\phi_{a}(r)\langle\phi_{a}|\hat{v}_{x}^{\text{NL}}|\phi_{i}\rangle}{\varepsilon_{i}-\varepsilon_{a}}+c.c.\bigg]|{{EquationRef|3}}}}

where \hat{v}_{x}^{\text{NL}} is the nonlocal exchange operator from Hartree-Fock (HF) theory but evaluated with KS orbitals stemming from the functional derivative \delta E_{xc}[\{\phi_{i}\}]/\delta\phi_{i}(r'). Lastly note that the following functional derivative is given by first order static perturbation theory exactly

\frac{\delta\phi_{s}(r')}{\delta v_{S}(r'')}=\phi_{i}(r')\underbrace{\sum_{t, t\neq i}\frac{\phi_{t}^{\dagger}(r')\phi_{t}(r)}{\varepsilon_{i}-\varepsilon_{t}}}_{G(r,r')}

which is a Green's function. Combining eqs. (1), (2) and (3) leads to the Optimized Effective Potential (OEP) Integral equation

\int dr'v_{x}(r')X_{S}(r,r')=t(r)

Implementation with a basis set

Usually the exchange potential is expanded in an auxiliary basis set (RI basis) \{f_{\mu}\} as v_{x}(r)=\sum_{\nu}v_{x,\nu}f_{\nu}(r) together with the regular orbital basis \{\chi_{\lambda}\} requiring the so-called 3-index integrals of the form (f_{\nu}|\chi_{\lambda}\chi_{\kappa}) as the linear algebra problem

\textbf X_{\text{S}}\textbf v_{\text{x}}=\textbf t

It shall be noted, that many OEP codes suffer from numerical issues.{{cite journal | author= Trushin, E. and Görling, A.|journal= The Journal of Chemical Physics| title=Numerically stable optimized effective potential method with standard Gaussian basis sets| volume=155| pages=054109| year=2021| doi=10.1063/5.0056431}} There are two main causes. The first is, that the Hohenberg-Kohn theorem is violated since for practical reasons a finite basis set is used, the second being that different spatial regions of potentials have different influence on the optimized energy leading e.g. to oscillations in the convergence from poor conditioning.

References