Order-5 tesseractic honeycomb

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Order-5 tesseractic honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
bgcolor=#e7dcc3|Schläfli symbol{4,3,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|4|node|3|node|3|node|5|node}}
bgcolor=#e7dcc3|4-faces50px {4,3,3}
bgcolor=#e7dcc3|Cells30px {4,3}
bgcolor=#e7dcc3|Faces30px {4}
bgcolor=#e7dcc3|Face figure30px {5}
bgcolor=#e7dcc3|Edge figure30px {3,5}
bgcolor=#e7dcc3|Vertex figure50px {3,3,5}
bgcolor=#e7dcc3|DualOrder-4 120-cell honeycomb
bgcolor=#e7dcc3|Coxeter group{{overline|BH}}4, [5,3,3,4]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 4-space, the order-5 tesseractic honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {4,3,3,5}, it has five 8-cells (also known as tesseracts) around each face. Its dual is the order-4 120-cell honeycomb, {5,3,3,4}.

Related polytopes and honeycombs

It is related to the Euclidean 4-space (order-4) tesseractic honeycomb, {4,3,3,4}, and the 5-cube, {4,3,3,3} in Euclidean 5-space. The 5-cube can also be seen as an order-3 tesseractic honeycomb on the surface of a 4-sphere.

See also

References

  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{isbn|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)

Category:3-honeycombs