Order-4 120-cell honeycomb

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Order-4 120-cell honeycomb

bgcolor=#ffffff align=center colspan=2|(No image)
bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
bgcolor=#e7dcc3|Schläfli symbol{5,3,3,4}
{5,3,31,1}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|5|node|3|node|3|node|4|node}}
{{CDD|node_1|5|node|3|node|split1|nodes}} = {{CDD|node_1|5|node|3|node|3|node|4|node_h0}}
bgcolor=#e7dcc3|4-faces50px {5,3,3}
bgcolor=#e7dcc3|Cells30px {5,3}
bgcolor=#e7dcc3|Faces30px {5}
bgcolor=#e7dcc3|Face figure30px {4}
bgcolor=#e7dcc3|Edge figure30px {3,4}
bgcolor=#e7dcc3|Vertex figure50px {3,3,4}
bgcolor=#e7dcc3|DualOrder-5 tesseractic honeycomb
bgcolor=#e7dcc3|Coxeter group{{overline|BH}}4, [5,3,3,4]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 4-space, the order-4 120-cell honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {5,3,3,4}, it has four 120-cells around each face. Its dual is the order-5 tesseractic honeycomb, {4,3,3,5}.

Related honeycombs

It is related to the (order-3) 120-cell honeycomb, and order-5 120-cell honeycomb.

See also

References

  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 {{isbn|0-486-40919-8}} (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)

Category:Honeycombs (geometry)