Order-7 tetrahedral honeycomb#Infinite-order tetrahedral honeycomb

class="wikitable" align="right" style="margin-left:10px" width=240

!bgcolor=#e7dcc3 colspan=2|Order-7 tetrahedral honeycomb

bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
bgcolor=#e7dcc3|Schläfli symbols{3,3,7}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node|3|node|7|node}}
bgcolor=#e7dcc3|Cells{3,3} 40px
bgcolor=#e7dcc3|Faces{3}
bgcolor=#e7dcc3|Edge figure{7}
bgcolor=#e7dcc3|Vertex figure{3,7} 61px
bgcolor=#e7dcc3|Dual{7,3,3}
bgcolor=#e7dcc3|Coxeter group[7,3,3]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 3-space, the order-7 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,7}. It has seven tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an order-7 triangular tiling vertex arrangement.

Images

class=wikitable width=480

|240px
Poincaré disk model (cell-centered)

|240px
Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

Related polytopes and honeycombs

It is a part of a sequence of regular polychora and honeycombs with tetrahedral cells, {3,3,p}.

{{Tetrahedral cell tessellations}}

It is a part of a sequence of hyperbolic honeycombs with order-7 triangular tiling vertex figures, {p,3,7}.

class=wikitable

!{3,3,7}

!{4,3,7}

!{5,3,7}

!{6,3,7}

!{7,3,7}

!{8,3,7}

!{∞,3,7}

80px

|80px

|80px

|80px

|80px

|80px

|80px

It is a part of a sequence of hyperbolic honeycombs, {3,p,7}.

= Order-8 tetrahedral honeycomb=

class="wikitable" align="right" style="margin-left:10px" width=280

!bgcolor=#e7dcc3 colspan=2|Order-8 tetrahedral honeycomb

bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
bgcolor=#e7dcc3|Schläfli symbols{3,3,8}
{3,(3,4,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node|3|node|8|node}}
{{CDD|node_1|3|node|3|node|8|node_h0}} = {{CDD|node_1|3|node|split1|branch|label4}}
bgcolor=#e7dcc3|Cells{3,3} 40px
bgcolor=#e7dcc3|Faces{3}
bgcolor=#e7dcc3|Edge figure{8}
bgcolor=#e7dcc3|Vertex figure{3,8} 40px
{(3,4,3)} 40px
bgcolor=#e7dcc3|Dual{8,3,3}
bgcolor=#e7dcc3|Coxeter group[3,3,8]
[3,((3,4,3))]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 3-space, the order-8 tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,8}. It has eight tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an order-8 triangular tiling vertex arrangement.

class=wikitable width=480

|240px
Poincaré disk model (cell-centered)

|240px
Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(3,4,3)}, Coxeter diagram, {{CDD|node_1|3|node|split1|branch|label4}}, with alternating types or colors of tetrahedral cells. In Coxeter notation the half symmetry is [3,3,8,1+] = [3,((3,4,3))].

{{Clear}}

=Infinite-order tetrahedral honeycomb=

class="wikitable" align="right" style="margin-left:10px" width=240

!bgcolor=#e7dcc3 colspan=2|Infinite-order tetrahedral honeycomb

bgcolor=#e7dcc3|TypeHyperbolic regular honeycomb
bgcolor=#e7dcc3|Schläfli symbols{3,3,∞}
{3,(3,∞,3)}
bgcolor=#e7dcc3|Coxeter diagrams{{CDD|node_1|3|node|3|node|infin|node}}
{{CDD|node_1|3|node|3|node|infin|node_h0}} = {{CDD|node_1|3|node|split1|branch|labelinfin}}
bgcolor=#e7dcc3|Cells{3,3} 40px
bgcolor=#e7dcc3|Faces{3}
bgcolor=#e7dcc3|Edge figure{∞}
bgcolor=#e7dcc3|Vertex figure{3,∞} 40px
{(3,∞,3)} 40px
bgcolor=#e7dcc3|Dual{∞,3,3}
bgcolor=#e7dcc3|Coxeter group[∞,3,3]
[3,((3,∞,3))]
bgcolor=#e7dcc3|PropertiesRegular

In the geometry of hyperbolic 3-space, the infinite-order tetrahedral honeycomb is a regular space-filling tessellation (or honeycomb) with Schläfli symbol {3,3,∞}. It has infinitely many tetrahedra {3,3} around each edge. All vertices are ultra-ideal (existing beyond the ideal boundary) with infinitely many tetrahedra existing around each vertex in an infinite-order triangular tiling vertex arrangement.

class=wikitable width=480

|240px
Poincaré disk model (cell-centered)

|240px
Rendered intersection of honeycomb with the ideal plane in Poincaré half-space model

It has a second construction as a uniform honeycomb, Schläfli symbol {3,(3,∞,3)}, Coxeter diagram, {{CDD|node_1|3|node|3|node|infin|node_h0}} = {{CDD|node_1|3|node|split1|branch|labelinfin}}, with alternating types or colors of tetrahedral cells. In Coxeter notation the half symmetry is [3,3,∞,1+] = [3,((3,∞,3))].

See also

References

{{reflist}}

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. {{ISBN|0-486-61480-8}}. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, {{LCCN|99035678}}, {{ISBN|0-486-40919-8}} (Chapter 10, [http://www.mathunion.org/ICM/ICM1954.3/Main/icm1954.3.0155.0169.ocr.pdf Regular Honeycombs in Hyperbolic Space]) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition {{ISBN|0-8247-0709-5}} (Chapters 16–17: Geometries on Three-manifolds I, II)
  • George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [http://www.sciencedirect.com/science/article/pii/0021869382903180]
  • Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, (2013)[https://arxiv.org/abs/1310.8608]
  • [https://arxiv.org/abs/1511.02851 Visualizing Hyperbolic Honeycombs arXiv:1511.02851] Roice Nelson, Henry Segerman (2015)