PIGQ

{{Short description|Protein-coding gene in the species Homo sapiens}}

{{Infobox_gene}}

Phosphatidylinositol N-acetylglucosaminyltransferase subunit Q is an enzyme that in humans is encoded by the PIGQ gene.{{cite journal | vauthors = Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T | title = The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1 | journal = EMBO J | volume = 17 | issue = 4 | pages = 877–85 |date=Mar 1998 | pmid = 9463366 | pmc = 1170437 | doi = 10.1093/emboj/17.4.877 }}{{cite journal | vauthors = Tiede A, Schubert J, Nischan C, Jensen I, Westfall B, Taron CH, Orlean P, Schmidt RE | title = Human and mouse Gpi1p homologues restore glycosylphosphatidylinositol membrane anchor biosynthesis in yeast mutants | journal = Biochem J | volume = 334 | issue = 3| pages = 609–16 |date=Nov 1998 | pmid = 9729469 | pmc = 1219730 | doi = 10.1042/bj3340609}}{{cite web | title = Entrez Gene: PIGQ phosphatidylinositol glycan anchor biosynthesis, class Q| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9091| accessdate = }}

This gene is involved in the first step in glycosylphosphatidylinositol (GPI)-anchor biosynthesis. The GPI-anchor is a glycolipid found on many blood cells and serves to anchor proteins to the cell surface. This gene encodes a N-acetylglucosaminyl transferase component that is part of the complex that catalyzes transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol (PI).

Interactions

PIGQ has been shown to interact with PIGH, PIGA and PIGC.

References

{{reflist}}

Further reading

{{refbegin | 2}}

  • {{cite journal |vauthors=Rual JF, Venkatesan K, Hao T, etal |title=Towards a proteome-scale map of the human protein-protein interaction network |journal=Nature |volume=437 |issue= 7062 |pages= 1173–8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 |bibcode=2005Natur.437.1173R |s2cid=4427026 }}
  • {{cite journal |vauthors=Martin J, Han C, Gordon LA, etal |title=The sequence and analysis of duplication-rich human chromosome 16 |journal=Nature |volume=432 |issue= 7020 |pages= 988–94 |year= 2005 |pmid= 15616553 |doi= 10.1038/nature03187 |bibcode=2004Natur.432..988M |doi-access= free }}
  • {{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
  • {{cite journal |vauthors=Colland F, Jacq X, Trouplin V, etal |title=Functional proteomics mapping of a human signaling pathway |journal=Genome Res. |volume=14 |issue= 7 |pages= 1324–32 |year= 2004 |pmid= 15231748 |doi= 10.1101/gr.2334104 | pmc=442148 }}
  • {{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |doi-access= free }}
  • {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
  • {{cite journal |vauthors=Tiede A, Daniels RJ, Higgs DR, etal |title=The human GPI1 gene is required for efficient glycosylphosphatidylinositol biosynthesis |journal=Gene |volume=271 |issue= 2 |pages= 247–54 |year= 2001 |pmid= 11418246 |doi=10.1016/S0378-1119(01)00510-8 }}
  • {{cite journal |vauthors=Daniels RJ, Peden JF, Lloyd C, etal |title=Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16 |journal=Hum. Mol. Genet. |volume=10 |issue= 4 |pages= 339–52 |year= 2001 |pmid= 11157797 |doi=10.1093/hmg/10.4.339 |doi-access=free }}
  • {{cite journal |vauthors=Watanabe R, Murakami Y, Marmor MD, etal |title=Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2 |journal=EMBO J. |volume=19 |issue= 16 |pages= 4402–11 |year= 2000 |pmid= 10944123 |doi= 10.1093/emboj/19.16.4402 | pmc=302040 }}
  • {{cite journal |vauthors=Hong Y, Ohishi K, Watanabe R, etal |title=GPI1 stabilizes an enzyme essential in the first step of glycosylphosphatidylinositol biosynthesis |journal=J. Biol. Chem. |volume=274 |issue= 26 |pages= 18582–8 |year= 1999 |pmid= 10373468 |doi=10.1074/jbc.274.26.18582 |doi-access=free }}
  • {{cite journal |vauthors=Watanabe R, Kinoshita T, Masaki R, etal |title=PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum |journal=J. Biol. Chem. |volume=271 |issue= 43 |pages= 26868–75 |year= 1996 |pmid= 8900170 |doi=10.1074/jbc.271.43.26868 |doi-access=free }}

{{refend}}

{{gene-16-stub}}