POVM
{{Short description|Generalized measurement in quantum mechanics}}
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs (called projective measurements).
In rough analogy, a POVM is to a PVM what a mixed state is to a pure state. Mixed states are needed to specify the state of a subsystem of a larger system (see purification of quantum state); analogously, POVMs are necessary to describe the effect on a subsystem of a projective measurement performed on a larger system.
POVMs are the most general kind of measurement in quantum mechanics, and can also be used in quantum field theory.{{cite journal|last1=Peres |first1=Asher |authorlink1=Asher Peres |last2=Terno |first2=Daniel R. |title=Quantum information and relativity theory |journal=Reviews of Modern Physics |volume=76 |number=1 |year=2004 |pages=93–123 |arxiv=quant-ph/0212023 |doi=10.1103/RevModPhys.76.93|bibcode=2004RvMP...76...93P |s2cid=7481797 }} They are extensively used in the field of quantum information.
Definition
Let denote a Hilbert space and a measurable space with a Borel σ-algebra on . A POVM is a function defined on whose values are positive bounded self-adjoint operators on such that for every
:
is a non-negative countably additive measure on the σ-algebra and is the identity operator.{{cite book | last=Davies | first=Edward Brian | title=Quantum Theory of Open Systems | publisher=Acad. Press | publication-place=London | date=1976 | isbn=978-0-12-206150-9|page=35}}
In quantum mechanics, the key property of a POVM is that it determines a probability measure on the outcome space, so that can be interpreted as the probability of the event when measuring a quantum state .
In the simplest case, in which is a finite set, is the power set of and is finite-dimensional, a POVM is equivalently a set of positive semi-definite Hermitian matrices that sum to the identity matrix,M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, (2000){{rp|90}}
:
A POVM differs from a projection-valued measure in that, for projection-valued measures, the values of are required to be orthogonal projections.
In the discrete case, the POVM element is associated with the measurement outcome , such that the probability of obtaining it when making a quantum measurement on the quantum state is given by
:,
where is the trace operator. When the quantum state being measured is a pure state this formula reduces to
:.
The discrete case of a POVM generalizes the simplest case of a PVM, which is a set of orthogonal projectors that sum to the identity matrix:
:
The probability formulas for a PVM are the same as for the POVM. An important difference is that the elements of a POVM are not necessarily orthogonal. As a consequence, the number of elements of the POVM can be larger than the dimension of the Hilbert space they act in. On the other hand, the number of elements of the PVM is at most the dimension of the Hilbert space.
Naimark's dilation theorem
{{Main|Naimark's dilation theorem}}
:Note: An alternate spelling of this is "Neumark's Theorem"
Naimark's dilation theoremI. M. Gelfand and M. A. Neumark, On the embedding of normed rings into the ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943), 197–213. shows how POVMs can be obtained from PVMs acting on a larger space. This result is of critical importance in quantum mechanics, as it gives a way to physically realize POVM measurements.A. Peres. Quantum Theory: Concepts and Methods. Kluwer Academic Publishers, 1993.{{rp|285}}
In the simplest case, of a POVM with a finite number of elements acting on a finite-dimensional Hilbert space, Naimark's theorem says that if is a POVM acting on a Hilbert space of dimension , then there exists a PVM acting on a Hilbert space of dimension and an isometry such that for all ,
:
For the particular case of a rank-1 POVM, i.e., when for some (unnormalized) vectors , this isometry can be constructed as{{rp|285}}
:
and the PVM is given simply by . Note that here .
In the general case, the isometry and PVM can be constructed by definingJ. Preskill, Lecture Notes for Physics: Quantum Information and Computation, Chapter 3, http://theory.caltech.edu/~preskill/ph229/index.htmlJ. Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. Chapter 2.3, https://cs.uwaterloo.ca/~watrous/TQI/ , , and
:
Note that here , so this is a more wasteful construction.
In either case, the probability of obtaining outcome with this PVM, and the state suitably transformed by the isometry, is the same as the probability of obtaining it with the original POVM:
:
= \operatorname{tr}\left( \rho_A V^\dagger \Pi_i V \right)
= \operatorname{tr}(\rho_A F_i)
This construction can be turned into a recipe for a physical realisation of the POVM by extending the isometry into a unitary , that is, finding such that
:
for from 1 to . This can always be done.
The recipe for realizing the POVM described by on a quantum state is then to embed the quantum state in the Hilbert space , evolve it with the unitary , and make the projective measurement described by the PVM .
= Post-measurement state =
The post-measurement state is not determined by the POVM itself, but rather by the PVM that physically realizes it. Since there are infinitely many different PVMs that realize the same POVM, the operators alone do not determine what the post-measurement state will be. To see that, note that for any unitary the operators
:
will also have the property that , so that using the isometry
:
in the second construction above will also implement the same POVM. In the case where the state being measured is in a pure state , the resulting unitary takes it together with the ancilla to state
:
and the projective measurement on the ancilla will collapse to the state{{rp|84}}
:
on obtaining result . When the state being measured is described by a density matrix , the corresponding post-measurement state is given by
:.
We see therefore that the post-measurement state depends explicitly on the unitary . Note that while is always Hermitian, generally, does not have to be Hermitian.
Another difference from the projective measurements is that a POVM measurement is in general not repeatable. If on the first measurement result was obtained, the probability of obtaining a different result on a second measurement is
:,
which can be nonzero if and are not orthogonal. In a projective measurement these operators are always orthogonal and therefore the measurement is always repeatable.
An example: unambiguous quantum state discrimination
Image:Bloch sphere representation of optimal POVM and states for unambiguous quantum state discrimination.svg representation of states (in blue) and optimal POVM (in red) for unambiguous quantum state discrimination on the states and . Note that on the Bloch sphere orthogonal states are antiparallel.]]
Suppose you have a quantum system with a 2-dimensional Hilbert space that you know is in either the state or the state , and you want to determine which one it is. If and are orthogonal, this task is easy: the set
:
:
where
:
Note that
The probability of having a conclusive outcome is given by
:
when the quantum system is in state
Since the POVMs are rank-1, we can use the simple case of the construction above to obtain a projective measurement that physically realises this POVM. Labelling the three possible states of the enlarged Hilbert space as
:
|\text{result ?}\rangle,\lang\varphi|\psi\rang
and similarly it takes the state
:
|\text{result ?}\rangle.\lang\varphi|\psi\rang
A projective measurement then gives the desired results with the same probabilities as the POVM.
This POVM has been used to experimentally distinguish non-orthogonal polarisation states of a photon. The realisation of the POVM with a projective measurement was slightly different from the one described here.{{cite journal | author1=B. Huttner | author2 = A. Muller | author3 = J. D. Gautier | author4 = H. Zbinden | author5 = N. Gisin | title=Unambiguous quantum measurement of nonorthogonal states | journal=Physical Review A | publisher=APS | volume=54 | issue=5 | year=1996 | pages = 3783–3789 | doi=10.1103/PhysRevA.54.3783 | pmid = 9913923 | bibcode = 1996PhRvA..54.3783H }}{{cite journal | author1=R. B. M. Clarke | author2 = A. Chefles | author3 = S. M. Barnett | author4 = E. Riis | title=Experimental demonstration of optimal unambiguous state discrimination | journal=Physical Review A | publisher=APS | volume=63 | year=2001 | issue = 4 | doi=10.1103/PhysRevA.63.040305 | page=040305(R) | arxiv=quant-ph/0007063| bibcode = 2001PhRvA..63d0305C | s2cid = 39481893 }}
See also
References
{{reflist}}
- POVMs
- K. Kraus, States, Effects, and Operations, Lecture Notes in Physics 190, Springer (1983).
- A.S. Holevo, Probabilistic and statistical aspects of quantum theory, North-Holland Publ. Cy., Amsterdam (1982).
External links
- [https://demonstrations.wolfram.com/QuantumStateDiscriminationWithTwoQubits/ Interactive demonstration about quantum state discrimination]
{{Spectral theory}}
{{Functional analysis}}
{{Analysis in topological vector spaces}}
{{DEFAULTSORT:Povm}}