Partial groupoid
{{Group-like structures}}
In abstract algebra, a partial groupoid (also called halfgroupoid, pargoid, or partial magma) is a set endowed with a partial binary operation.{{cite book|editor=Ben Silver|title=Nineteen Papers on Algebraic Semigroups|publisher=American Mathematical Soc.|isbn=0-8218-3115-1|author=Evseev, A. E.|chapter=A survey of partial groupoids|year=1988}}{{cite book|editor1=Folkert Müller-Hoissen |editor2=Jean Marcel Pallo |editor3=Jim Stasheff|title=Associahedra, Tamari Lattices and Related Structures: Tamari Memorial Festschrift|url=https://archive.org/details/associahedratama00mlle|url-access=limited|year=2012|publisher=Springer Science & Business Media|isbn=978-3-0348-0405-9|pages=[https://archive.org/details/associahedratama00mlle/page/n31 11] and 82}}
A partial groupoid is a partial algebra.
Partial semigroup
A partial groupoid is called a partial semigroup if the following associative law holds:{{cite journal |last1=Schelp |first1=R. H. |title=A partial semigroup approach to partially ordered sets |journal=Proceedings of the London Mathematical Society |date=1972 |volume=3 |issue=1 |pages=46–58 |doi=10.1112/plms/s3-24.1.46 |url=https://academic.oup.com/plms/article/s3-24/1/46/1572363 |access-date=1 April 2023|url-access=subscription }}
For all such that and , the following two statements hold:
- if and only if , and
- if (and, because of 1., also ).
References
{{reflist}}
Further reading
- {{cite book|author1=E.S. Ljapin|author2=A.E. Evseev|title=The Theory of Partial Algebraic Operations|year=1997|publisher=Springer Netherlands|isbn=978-0-7923-4609-8}}
{{algebra-stub}}