Pentic 7-cubes#Pentistericantic 7-cube

class=wikitable align=right width=480
align=center valign=top

|120px
7-demicube
(half 7-cube, h{4,35})
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node}}
{{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|3|node}}

|120px
Pentic 7-cube
h5{4,35}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node}}
{{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1|3|node}}

|120px
Penticantic 7-cube
h2,5{4,35}
{{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node}}
{{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1|3|node}}

align=center valign=top

|120px
Pentiruncic 7-cube
h3,5{4,35}
{{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node}}
{{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1|3|node}}

|120px
Pentiruncicantic 7-cube
h2,3,5{4,35}
{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node}}
{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node}}

|120px
Pentisteric 7-cube
h4,5{4,35}
{{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node}}
{{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1|3|node}}

align=center valign=top

|120px
Pentistericantic 7-cube
h2,4,5{4,35}
{{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node}}
{{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node}}

|120px
Pentisteriruncic 7-cube
h3,4,5{4,35}
{{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node}}
{{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node}}

|120px
Penticsteriruncicantic 7-cube
h2,3,4,5{4,35}
{{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node}}
{{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}}

colspan=3|Orthogonal projections in D7 Coxeter plane

In seven-dimensional geometry, a pentic 7-cube is a convex uniform 7-polytope, related to the uniform 7-demicube. There are 8 unique forms.

{{TOC left}}

{{-}}

Pentic 7-cube

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Pentic 7-cube

bgcolor=#e7dcc3|Typeuniform 7-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,4{3,34,1}
h5{4,35}
bgcolor=#e7dcc3|Coxeter-Dynkin diagram{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node_1|3|node}}
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges13440
bgcolor=#e7dcc3|Vertices1344
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsD7, [34,1,1]
bgcolor=#e7dcc3|Propertiesconvex

= Cartesian coordinates =

The Cartesian coordinates for the vertices of a pentic 7-cube centered at the origin are coordinate permutations:

: (±1,±1,±1,±1,±1,±3,±3)

with an odd number of plus signs.

=Images=

{{7-demicube Coxeter plane graphs|t04|120}}

= Related polytopes=

{{Pentic cube table}}

Penticantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t014|120}}

Pentiruncic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t024|120}}

Pentiruncicantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0124|120}}

Pentisteric 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t034|120}}

Pentistericantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0134|120}}

Pentisteriruncic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t0234|120}}

Pentisteriruncicantic 7-cube

=Images=

{{7-demicube Coxeter plane graphs|t01234|120}}

Related polytopes

This polytope is based on the 7-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 95 uniform polytopes with D7 symmetry, 63 are shared by the BC7 symmetry, and 32 are unique:

{{Demihepteract_family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}}