Picard modular group
{{distinguish|Picard group}}
In mathematics, a Picard modular group, studied by {{harvs|txt|last=Picard|authorlink=Émile Picard|year=1881}}, is a group of the form SU(J,L), where L is a 3-dimensional lattice over the ring of integers of an imaginary quadratic field and J is a hermitian form on L of signature (2, 1). Picard modular groups act on the unit sphere in C2 and the quotient is called a Picard modular surface.
See also
References
- {{Citation | editor1-last=Langlands | editor1-first=Robert P. |editor1-link=Robert Langlands| editor2-last=Ramakrishnan | editor2-first=Dinakar | title=The zeta functions of Picard modular surfaces | publisher=Univ. Montréal | location=Montreal, QC | isbn=978-2-921120-08-1 |mr=1155233 | year=1992 }}
- {{Citation | last1=Picard | first1=Émile |authorlink=Émile Picard| title= Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques | url= http://www.numdam.org/item?id=ASENS_1881_2_10__305_0 | year=1881 | journal=Annales Scientifiques de l'École Normale Supérieure |series=Série 2 | volume=10 | pages=305–322}}
{{group-theory-stub}}