Picard modular surface

In mathematics, a Picard modular surface, studied by {{harvs|txt|last=Picard|authorlink=Émile Picard|year=1881}}, is a complex surface constructed as a quotient of the unit ball in C2 by a Picard modular group.

Picard modular surfaces are some of the simplest examples of Shimura varieties and are sometimes used as a test case for the general theory of Shimura varieties.

See also

References

  • {{Citation | editor1-last=Langlands | editor1-first=Robert P. |editor1-link=Robert Langlands| editor2-last=Ramakrishnan | editor2-first=Dinakar | title=The zeta functions of Picard modular surfaces | publisher=Univ. Montréal | location=Montreal, QC | isbn=978-2-921120-08-1 |mr=1155233 | year=1992 }}
  • {{Citation | last1=Picard | first1=Émile |authorlink=Émile Picard| title= Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques | url= http://www.numdam.org/item?id=ASENS_1881_2_10__305_0 | year=1881 | journal=Annales Scientifiques de l'École Normale Supérieure |series=Série 2 | volume=10 | pages=305–322| doi=10.24033/asens.203 }}

Category:Complex surfaces

Category:Algebraic surfaces

Category:Automorphic forms

Category:Langlands program