Pokhozhaev's identity

Pokhozhaev's identity is an integral relation satisfied by stationary localized solutions to a nonlinear Schrödinger equation or nonlinear Klein–Gordon equation. It was obtained by S.I. Pokhozhaev{{cite journal

|author=Pokhozhaev, S.I.

|title=On the eigenfunctions of the equation \Delta u+\lambda f(u)=0

|journal=Dokl. Akad. Nauk SSSR

|volume=165

|pages=36–39

|year=1965

|url=http://mi.mathnet.ru/rus/dan/v165/i1/p36

}} and is similar to the virial theorem. This relation is also known as G.H. Derrick's theorem. Similar identities can be derived for other equations of mathematical physics.

The Pokhozhaev identity for the stationary nonlinear Schrödinger equation

Here is a general form due to H. Berestycki and P.-L. Lions.{{ cite journal

|author=Berestycki, H. and Lions, P.-L.

|title=Nonlinear scalar field equations, I. Existence of a ground state

|journal=Arch. Rational Mech. Anal.

|volume=82

|issue=4

|year=1983

|pages=313–345

|doi=10.1007/BF00250555

|bibcode=1983ArRMA..82..313B

|s2cid=123081616

}}

Let g(s) be continuous and real-valued, with g(0)=0.

Denote G(s)=\int_0^s g(t)\,dt.

Let

:u\in L^\infty_{\mathrm{loc}}(\R^n),

\qquad

\nabla u\in L^2(\R^n),

\qquad

G(u)\in L^1(\R^n),

\qquad

n\in\N,

be a solution to the equation

:-\nabla^2 u=g(u),

in the sense of distributions.

Then u satisfies the relation

:\frac{n-2}{2}\int_{\R^n}|\nabla u(x)|^2\,dx=n\int_{\R^n}G(u(x))\,dx.

The Pokhozhaev identity for the stationary nonlinear Dirac equation

There is a form of the virial identity for the stationary nonlinear Dirac equation in three spatial dimensions (and also the Maxwell-Dirac equations){{ cite journal

|author=Esteban, M. and Séré, E.

|title=Stationary states of the nonlinear Dirac equation: A variational approach

|journal=Commun. Math. Phys.

|volume=171

|issue=2

|year=1995

|pages=323–350

|doi=10.1007/BF02099273

|bibcode=1995CMaPh.171..323E

|s2cid=120901245

|url=http://projecteuclid.org/euclid.cmp/1104273565

}} and in arbitrary spatial dimension.{{ cite book

|author=Boussaid, N. and Comech, A.

|title=Nonlinear Dirac equation. Spectral stability of solitary waves

|publisher=American Mathematical Society

|series=Mathematical Surveys and Monographs

|volume=244

|year=2019

|doi=10.1090/surv/244

|isbn=978-1-4704-4395-5

|s2cid=216380644

}}

Let n\in\N,\,N\in\N

and let \alpha^i,\,1\le i\le n and \beta be the self-adjoint Dirac matrices of size N\times N:

:

\alpha^i\alpha^j+\alpha^j\alpha^i=2\delta_{ij}I_N,

\quad

\beta^2=I_N,

\quad

\alpha^i\beta+\beta\alpha^i=0,

\quad

1\le i,j\le n.

Let D_0=-\mathrm{i}\alpha\cdot\nabla=-\mathrm{i}\sum_{i=1}^n\alpha^i\frac{\partial}{\partial x^i} be the massless Dirac operator.

Let g(s) be continuous and real-valued, with g(0)=0.

Denote G(s)=\int_0^s g(t)\,dt.

Let \phi\in L^\infty_{\mathrm{loc}}(\R^n,\C^N) be a spinor-valued solution that satisfies the stationary form of the nonlinear Dirac equation,

:

\omega\phi=D_0\phi+g(\phi^\ast\beta\phi)\beta\phi,

in the sense of distributions,

with some \omega\in\R.

Assume that

:

\phi\in H^1(\R^n,\C^N),\qquad

G(\phi^\ast\beta\phi)\in L^1(\R^n).

Then \phi satisfies the relation

:

\omega\int_{\R^n}\phi(x)^\ast\phi(x)\,dx

=\frac{n-1}{n}\int_{\R^n}\phi(x)^\ast D_0\phi(x)\,dx

+\int_{\R^n}G(\phi(x)^\ast\beta\phi(x))\,dx.

See also

References