Derrick's theorem

Derrick's theorem is an argument by physicist G. H. Derrick

which shows that stationary localized solutions to a nonlinear wave equation

or nonlinear Klein–Gordon equation

in spatial dimensions three and higher are unstable.

Original argument

Derrick's paper,{{ cite journal

|author=G. H. Derrick

|title=Comments on nonlinear wave equations as models for elementary particles

|journal=J. Math. Phys.

|volume=5

|issue=9

|pages=1252–1254

|year=1964

|doi=10.1063/1.1704233

|bibcode=1964JMP.....5.1252D |doi-access=free

}}

which was considered an obstacle to

interpreting soliton-like solutions as particles,

contained the following physical argument

about non-existence of stable localized stationary solutions

to the nonlinear wave equation

:\nabla^2 \theta-\frac{\partial^2\theta}{\partial t^2}=\frac 1 2 f'(\theta),

\qquad

\theta(x,t)\in\R,\quad x\in\R^3,

now known under the name of Derrick's Theorem. (Above, f(s) is a differentiable function with f'(0)=0.)

The energy of the time-independent solution \theta(x)\, is given by

:

E=\int\left[(\nabla\theta)^2+f(\theta)\right] \, d^3 x.

A necessary condition for the solution to be stable is \delta^2 E\ge 0\,. Suppose \theta(x)\, is a localized solution of \delta E=0\,. Define \theta_\lambda(x)=\theta(\lambda x)\, where \lambda is an arbitrary constant, and write I_1=\int(\nabla\theta)^2 d^3 x, I_2=\int f(\theta) d^3 x. Then

:

E_\lambda

=\int\left[(\nabla\theta_\lambda)^2+f(\theta_\lambda)\right] \, d^3 x

=I_1/\lambda +I_2/\lambda^3.

Whence

dE_\lambda/d\lambda\vert_{\lambda=1}=-I_1-3 I_2=0.\,

and since I_1>0\,,

:

\left.\frac{d^2E_\lambda}{d\lambda^2}\right|_{\lambda=1}=2 I_1+12 I_2=-2 I_1\,<0.

That is, \delta^2 E<0\, for a variation corresponding to

a uniform stretching of the particle.

Hence the solution \theta(x)\, is unstable.

Derrick's argument works for x\in\R^n, n\ge 3\,.

Pokhozhaev's identity

More generally,{{ cite journal

|author=Berestycki, H. and Lions, P.-L.

|title=Nonlinear scalar field equations, I. Existence of a ground state

|journal=Arch. Rational Mech. Anal.

|volume=82

|issue=4

|year=1983

|pages=313–345

|doi=10.1007/BF00250555

|bibcode=1983ArRMA..82..313B

|s2cid=123081616

}}

let g be continuous, with g(0)=0.

Denote G(s)=\int_0^s g(t)\,dt.

Let

:u\in L^\infty_{\mathrm{loc}}(\R^n),

\qquad

\nabla u\in L^2(\R^n),

\qquad

G(u(\cdot))\in L^1(\R^n),

\qquad

n\in\N,

be a solution to the equation

:-\nabla^2 u=g(u),

in the sense of distributions.

Then u satisfies the relation

:(n-2)\int_{\R^n}|\nabla u(x)|^2\,dx=n\int_{\R^n}G(u(x))\,dx,

known as Pokhozhaev's identity (sometimes spelled as Pohozaev's identity).{{ cite journal

|author=Pokhozhaev, S. I.

|title=On the eigenfunctions of the equation \Delta u+\lambda f(u)=0

|journal=Dokl. Akad. Nauk SSSR

|volume=165

|pages=36–39

|year=1965

|url=http://mi.mathnet.ru/rus/dan/v165/i1/p36

}}

This result is similar to the virial theorem.

Interpretation in the Hamiltonian form

We may write the equation

\partial_t^2 u=\nabla^2 u-\frac{1}{2}f'(u)

in the Hamiltonian form

\partial_t u=\delta_v H(u,v),

\partial_t v=-\delta_u H(u,v),

where u,\,v are functions of x\in\R^n,\,t\in\R,

the Hamilton function is given by

:

H(u,v)=\int_{\R^n}\left(

\frac{1}{2}|v|^2+\frac{1}{2}|\nabla u|^2+\frac{1}{2}f(u)

\right)\,dx,

and \delta_u H\,, \delta_v H\,

are the

variational derivatives of H(u,v)\,.

Then the stationary solution u(x,t)=\theta(x)\,

has the energy

H(\theta,0)=\int_{\R^n}\left(

\frac{1}{2}|\nabla\theta|^2+\frac{1}{2}f(\theta)

\right)\,d^n x

and

satisfies the equation

:

0=\partial_t \theta(x)=-\partial_u H(\theta,0)=\frac{1}{2}E'(\theta),

with

E'\, denoting a variational derivative

of the functional

E=\int_{\R^n}[\vert\nabla\theta\vert^2+f(\theta)]\,d^n x.

Although the solution \theta(x)\,

is a critical point of E\, (since E'(\theta)=0\,),

Derrick's argument shows that

\frac{d^2}{d\lambda\,^2}E(\theta(\lambda x))<0

at \lambda=1\,,

hence

u(x,t)=\theta(x)\,

is not a point of the local minimum of the energy functional H\,.

Therefore, physically, the solution \theta(x)\, is expected to be unstable.

A related result, showing non-minimization of the energy of localized stationary states

(with the argument also written for n=3, although the derivation being valid in dimensions n\ge 2) was obtained by R. H. Hobart in 1963.{{ cite journal

|author=R. H. Hobart

|title=On the instability of a class of unitary field models

|journal=Proc. Phys. Soc.

|volume=82

|issue=2

|pages=201–203

|year=1963

|doi=10.1088/0370-1328/82/2/306

|bibcode=1963PPS....82..201H

}}

Relation to linear instability

A stronger statement, linear (or exponential) instability of localized stationary solutions

to the nonlinear wave equation (in any spatial dimension) is proved

by P. Karageorgis and W. A. Strauss in 2007.{{ cite journal

|author=P. Karageorgis and W. A. Strauss

|title=Instability of steady states for nonlinear wave and heat equations

|journal=J. Differential Equations

|volume=241

|pages=184–205

|year=2007

|issue=1

|doi=10.1016/j.jde.2007.06.006 |arxiv=math/0611559

|bibcode=2007JDE...241..184K

|s2cid=18889076

}}

Stability of localized time-periodic solutions

Derrick describes some possible ways out of this difficulty, including the conjecture that Elementary particles might correspond to stable, localized solutions which are periodic in time, rather than time-independent.

Indeed, it was later shown{{ cite journal

|author=Вахитов, Н. Г. and Колоколов, А. А.

|title=Стационарные решения волнового уравнения в среде с насыщением нелинейности

|journal=Известия высших учебных заведений. Радиофизика

|volume=16

|year=1973

|pages=1020–1028 }} {{ cite journal

|author=N. G. Vakhitov and A. A. Kolokolov

|title=Stationary solutions of the wave equation in the medium with nonlinearity saturation

|journal=Radiophys. Quantum Electron.

|volume=16

|issue=7

|year=1973

|pages=783–789

|doi=10.1007/BF01031343

|bibcode=1973R&QE...16..783V |s2cid=123386885

}} that a time-periodic solitary wave u(x,t)=\phi_\omega(x)e^{-i\omega t}\, with frequency \omega\, may be orbitally stable if the Vakhitov–Kolokolov stability criterion is satisfied.

See also

References