Polymetallic ore
{{Short description|Complex metal ores}}
{{About|complex metal ores|metallic combination of elements|Alloy}}
Polymetallic ores or multimetal ores are complex ores containing a number of chemical elements, among which the most important are lead and zinc. In addition, polymetallic ores can contain copper, gold, silver, cadmium, sometimes bismuth, tin, indium and gallium.{{Cite journal |last=Vikentyev |first=I.V. |last2=Damdinov |first2=B.B. |last3=Minina |first3=O.R. |last4=Spirina |first4=A.V. |last5=Damdinova |first5=L.B. |date=2023 |title=Classification of Polymetallic Ore-Forming Processes and Transitional VMS–SEDEX–MV-type: the Example of the Giant Ozernoe Deposit in Transbaikalia, Russia |url=https://link.springer.com/10.1134/S1075701523030054 |journal=Geology of Ore Deposits |language=en |volume=65 |issue=3 |pages=191–223 |doi=10.1134/S1075701523030054 |issn=1075-7015|url-access=subscription }} The main minerals that form polymetallic ores are galena, sphalerite, to a lesser extent pyrite, chalcopyrite, arsenopyrite, cassiterite.{{cite encyclopedia | year = 2000–2005 | encyclopedia = National Encyclopedia of Uzbekistan | publisher = National Encyclopedia of Uzbekistan State Scientific Publishing House | location = Tashkent | language = Uzbek | id = | title=Oʻzbekiston milliy ensiklopediyasi }} They are most commonly formed from sulfides but also include oxides.{{cite web|url=https://geologyscience.com/geology-branches/mining-geology/polymetallic-vein-deposits/|title=Polymetallic Vein Deposits|website=Geologyscience.com}}
The three main families of sulfide polymetallic ores are identified as volcanogenic massive sulphide family, the sedimentary exhalative family, and the Mississippi Valley type family. The classification of lead-zinc deposits in particular has been varied and resulted in a number of different organizations schemes. The term "polymetallic ore" also includes nodules, principally Manganese nodules, that do not form as terrestrial deposits but as concretions on the ocean floor.{{cite book |last1=Das |first1=RP |url=https://link.springer.com/content/pdf/10.1007/978-3-319-52557-0_12.pdf |title=Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations |last2=Anand |first2=S. |publisher=Springer |year=2017 |editor=R. Sharma |pages=365-94 |chapter=Metallurgical processing of polymetallic ocean nodules}}
Rocks containing polymetallic ores are often altered or formed by hydrothermal processes — chloritization, sericitization and silicification.{{Cite book |title=Geochemistry of hydrothermal ore deposits |date=1997 |publisher=Wiley |isbn=978-0-471-57144-5 |editor-last=Barnes |editor-first=Hubert Lloyd |edition=3rd |location=New York}}{{Cite journal |last=Hedenquist |first=Jeffrey W. |last2=Lowenstern |first2=Jacob B. |date=1994 |title=The role of magmas in the formation of hydrothermal ore deposits |url=http://dx.doi.org/10.1038/370519a0 |journal=Nature |volume=370 |issue=6490 |pages=519–527 |doi=10.1038/370519a0 |issn=0028-0836|url-access=subscription }} These deposits are often iron hydroxides containing cerussite PbCO3, anglesite PbSO4, smithsonite ZnCO3, calamine Zn4[Si2O7] [OH]2×H2O, malachite Cu2[CO3](OH)2, azurite Cu3[CO3]2(OH)2. Depending on the concentration of ore minerals, a distinction is made between solid or disseminated ores. Ore bodies of polymetallic ores are distinguished by a variety of sizes (having a length of several m to km), morphology (lenticular bedding deposits,{{Cite journal |last=Reineck |first=Hans‐Erich |last2=Wunderlich |first2=Friedrich |date=1968 |title=Classification and Origin of Flaser and Lenticular Bedding |url=https://onlinelibrary.wiley.com/doi/10.1111/j.1365-3091.1968.tb00843.x |journal=Sedimentology |language=en |volume=11 |issue=1-2 |pages=99–104 |doi=10.1111/j.1365-3091.1968.tb00843.x |issn=0037-0746|url-access=subscription }} stockwork, veins,{{Cite journal |last=Bons |first=Paul D. |last2=Elburg |first2=Marlina A. |last3=Gomez-Rivas |first3=Enrique |date=2012 |title=A review of the formation of tectonic veins and their microstructures |url=https://linkinghub.elsevier.com/retrieve/pii/S0191814112001654 |journal=Journal of Structural Geology |language=en |volume=43 |pages=33–62 |doi=10.1016/j.jsg.2012.07.005|url-access=subscription }} nests, complex tube-like bodies) and occurrence conditions (gentle, steep, consonant, secant, etc.).{{Cite journal |last=Mykhailov |first=V. |last2=Yessendossova |first2=A. |date=2022 |title=Factors of Controlling Polymetallic Mineralization on the Example of the Dalnegorsky (Far East) and Uspensky (Central Kazakhstan) Ore Districts |url=https://www.earthdoc.org/content/papers/10.3997/2214-4609.2022580041 |journal=15th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment |language=en |publisher=European Association of Geoscientists & Engineers |pages=1–5 |doi=10.3997/2214-4609.2022580041|url-access=subscription }}
See also
- Carbonate-hosted lead-zinc ore deposits
- Ore genesis
- Polymetallic replacement deposit
- {{ill|Flotation of lead polymetallic ores|uk|Флотація свинцевих поліметалічних руд}}
- {{ill|Lead-zinc ores|uk| Свинцево-цинкові руди}}
- {{ill|Resources and reserves of lead|uk|Ресурси і запаси свинцю}}
- {{interlanguage link|Мала гірнича енциклопедія|lt=Small mining encyclopedia|uk}}
- {{ill|Zinc resources and reserves|uk|Ресурси і запаси цинку}}
References
{{reflist}}
Literature
- Evans, Anthony, (1992) Ore Geology and Industrial Minerals: An Introduction, Blackwell Science; 3rd edition {{ISBN|0-632-02953-6}}
- Guilbert, John M. and Charles F. Park, Jr (1986) The Geology of Ore Deposits, W. H. Freeman {{ISBN|0-7167-1456-6}}
{{Ores}}
{{geology-stub}}