Power residue symbol

{{Technical|date=October 2022}}

In algebraic number theory the n-th power residue symbol (for an integer n > 2) is a generalization of the (quadratic) Legendre symbol to n-th powers. These symbols are used in the statement and proof of cubic, quartic, Eisenstein, and related higherQuadratic reciprocity deals with squares; higher refers to cubes, fourth, and higher powers. reciprocity laws.All the facts in this article are in Lemmermeyer Ch. 4.1 and Ireland & Rosen Ch. 14.2

Background and notation

Let k be an algebraic number field with ring of integers \mathcal{O}_k that contains a primitive n-th root of unity \zeta_n.

Let \mathfrak{p} \subset \mathcal{O}_k be a prime ideal and assume that n and \mathfrak{p} are coprime (i.e. n \not \in \mathfrak{p}.)

The norm of \mathfrak{p} is defined as the cardinality of the residue class ring (note that since \mathfrak{p} is prime the residue class ring is a finite field):

:\mathrm{N} \mathfrak{p} := |\mathcal{O}_k / \mathfrak{p}|.

An analogue of Fermat's theorem holds in \mathcal{O}_k. If \alpha \in \mathcal{O}_k - \mathfrak{p}, then

:\alpha^{\mathrm{N} \mathfrak{p} -1}\equiv 1 \bmod{\mathfrak{p}}.

And finally, suppose \mathrm{N} \mathfrak{p} \equiv 1 \bmod{n}. These facts imply that

:\alpha^{\frac{\mathrm{N} \mathfrak{p} -1}{n}}\equiv \zeta_n^s\bmod{\mathfrak{p} }

is well-defined and congruent to a unique n-th root of unity \zeta_n^s.

Definition

This root of unity is called the n-th power residue symbol for \mathcal{O}_k, and is denoted by

:\left(\frac{\alpha}{\mathfrak{p} }\right)_n= \zeta_n^s \equiv \alpha^{\frac{\mathrm{N} \mathfrak{p} -1}{n}}\bmod{\mathfrak{p}}.

Properties

The n-th power symbol has properties completely analogous to those of the classical (quadratic) Jacobi symbol (\zeta is a fixed primitive n-th root of unity):

:\left(\frac{\alpha}{\mathfrak{p} }\right)_n = \begin{cases}

0 & \alpha\in\mathfrak{p}\\

1 & \alpha\not\in\mathfrak{p}\text{ and } \exists \eta \in\mathcal{O}_k : \alpha \equiv \eta^n \bmod{\mathfrak{p}}\\

\zeta & \alpha\not\in\mathfrak{p}\text{ and there is no such }\eta

\end{cases}

In all cases (zero and nonzero)

:\left(\frac{\alpha}{\mathfrak{p}}\right)_n \equiv \alpha^{\frac{\mathrm{N} \mathfrak{p} -1}{n}}\bmod{\mathfrak{p}}.

: \left(\frac{\alpha}{\mathfrak{p}}\right)_n \left(\frac{\beta}{\mathfrak{p}}\right)_n = \left(\frac{\alpha\beta}{\mathfrak{p} }\right)_n

:\alpha \equiv\beta\bmod{\mathfrak{p}} \quad \Rightarrow \quad \left(\frac{\alpha}{\mathfrak{p} }\right)_n = \left(\frac{\beta}{\mathfrak{p} }\right)_n

All power residue symbols mod n are Dirichlet characters mod n, and the m-th power residue symbol only contains the m-th roots of unity, the m-th power residue symbol mod n exists if and only if m divides \lambda(n) (the Carmichael lambda function of n).

Relation to the Hilbert symbol

The n-th power residue symbol is related to the Hilbert symbol (\cdot,\cdot)_{\mathfrak{p}} for the prime \mathfrak{p} by

:\left(\frac{\alpha}{\mathfrak{p} }\right)_n = (\pi, \alpha)_{\mathfrak{p}}

in the case \mathfrak{p} coprime to n, where \pi is any uniformising element for the local field K_{\mathfrak{p}}.Neukirch (1999) p. 336

Generalizations

The n-th power symbol may be extended to take non-prime ideals or non-zero elements as its "denominator", in the same way that the Jacobi symbol extends the Legendre symbol.

Any ideal \mathfrak{a}\subset\mathcal{O}_k is the product of prime ideals, and in one way only:

:\mathfrak{a} = \mathfrak{p}_1 \cdots\mathfrak{p}_g.

The n-th power symbol is extended multiplicatively:

: \left(\frac{\alpha}{\mathfrak{a} }\right)_n = \left(\frac{\alpha}{\mathfrak{p}_1 }\right)_n \cdots \left(\frac{\alpha}{\mathfrak{p}_g }\right)_n.

For 0 \neq \beta\in\mathcal{O}_k then we define

:\left(\frac{\alpha}{\beta}\right)_n := \left(\frac{\alpha}{(\beta) }\right)_n,

where (\beta) is the principal ideal generated by \beta.

Analogous to the quadratic Jacobi symbol, this symbol is multiplicative in the top and bottom parameters.

  • If \alpha\equiv\beta\bmod{\mathfrak{a}} then \left(\tfrac{\alpha}{\mathfrak{a} }\right)_n = \left(\tfrac{\beta}{\mathfrak{a} }\right)_n.
  • \left(\tfrac{\alpha}{\mathfrak{a} }\right)_n \left(\tfrac{\beta}{\mathfrak{a} }\right)_n = \left(\tfrac{\alpha\beta}{\mathfrak{a} }\right)_n.
  • \left(\tfrac{\alpha}{\mathfrak{a} }\right)_n \left(\tfrac{\alpha}{\mathfrak{b} }\right)_n = \left(\tfrac{\alpha}{\mathfrak{ab} }\right)_n.

Since the symbol is always an n-th root of unity, because of its multiplicativity it is equal to 1 whenever one parameter is an n-th power; the converse is not true.

  • If \alpha\equiv\eta^n\bmod{\mathfrak{a}} then \left(\tfrac{\alpha}{\mathfrak{a} }\right)_n =1.
  • If \left(\tfrac{\alpha}{\mathfrak{a} }\right)_n \neq 1 then \alpha is not an n-th power modulo \mathfrak{a}.
  • If \left(\tfrac{\alpha}{\mathfrak{a} }\right)_n =1 then \alpha may or may not be an n-th power modulo \mathfrak{a}.

Power reciprocity law

The power reciprocity law, the analogue of the law of quadratic reciprocity, may be formulated in terms of the Hilbert symbols asNeukirch (1999) p. 415

:\left({\frac{\alpha}{\beta}}\right)_n \left({\frac{\beta}{\alpha}}\right)_n^{-1} = \prod_{\mathfrak{p} | n\infty} (\alpha,\beta)_{\mathfrak{p}},

whenever \alpha and \beta are coprime.

See also

Notes

{{reflist}}

References

  • {{citation | last=Gras | first=Georges | title=Class field theory. From theory to practice | series=Springer Monographs in Mathematics | location=Berlin | publisher=Springer-Verlag | year=2003 | isbn=3-540-44133-6 | zbl=1019.11032 | pages=204–207 }}
  • {{citation | last1 = Ireland | first1 = Kenneth | last2 = Rosen | first2 = Michael | title = A Classical Introduction to Modern Number Theory (Second edition) | publisher = Springer Science+Business Media | location = New York | year = 1990 | isbn = 0-387-97329-X}}
  • {{citation | last1 = Lemmermeyer | first1 = Franz | title = Reciprocity Laws: from Euler to Eisenstein | series = Springer Monographs in Mathematics | publisher = Springer Science+Business Media | location = Berlin | year = 2000 | isbn = 3-540-66957-4 | doi=10.1007/978-3-662-12893-0 | zbl=0949.11002 | mr=1761696 }}
  • {{citation | last=Neukirch | first=Jürgen | author-link=Jürgen Neukirch | title=Algebraic number theory | others=Translated from the German by Norbert Schappacher | series=Grundlehren der Mathematischen Wissenschaften | volume=322 | location=Berlin | publisher=Springer-Verlag | year=1999 | isbn=3-540-65399-6 | zbl=0956.11021 }}

Category:Algebraic number theory