Quantum Markov semigroup

{{Short description|A kind of mathematical structure which describes the dynamics in a Markovian open quantum system.}}

In quantum mechanics, a quantum Markov semigroup describes the dynamics in a Markovian open quantum system. The axiomatic definition of the prototype of quantum Markov semigroups was first introduced by A. M. Kossakowski{{cite journal |last1=Kossakowski |first1=A. |title=On quantum statistical mechanics of non-Hamiltonian systems |journal=Reports on Mathematical Physics |date=December 1972 |volume=3 |issue=4 |pages=247–274 |doi=10.1016/0034-4877(72)90010-9|bibcode=1972RpMP....3..247K }} in 1972, and then developed by V. Gorini, A. M. Kossakowski, E. C. G. Sudarshan{{cite journal |last1=Gorini |first1=Vittorio |last2=Kossakowski |first2=Andrzej |last3=Sudarshan |first3=Ennackal Chandy George |title=Completely positive dynamical semigroups of N-level systems |journal=Journal of Mathematical Physics |date=1976 |volume=17 |issue=5 |pages=821 |doi=10.1063/1.522979|bibcode=1976JMP....17..821G }} and Göran Lindblad in 1976.{{cite journal |last1=Chruściński |first1=Dariusz |last2=Pascazio |first2=Saverio |title=A Brief History of the GKLS Equation |journal=Open Systems & Information Dynamics |date=September 2017 |volume=24 |issue=3 |pages=1740001 |doi=10.1142/S1230161217400017|arxiv=1710.05993 |bibcode=2017OSID...2440001C |s2cid=90357 }}

Motivation

An ideal quantum system is not realistic because it should be completely isolated while, in practice, it is influenced by the coupling to an environment, which typically has a large number of degrees of freedom (for example an atom interacting with the surrounding radiation field). A complete microscopic description of the degrees of freedom of the environment is typically too complicated. Hence, one looks for simpler descriptions of the dynamics of the open system. In principle, one should investigate the unitary dynamics of the total system, i.e. the system and the environment, to obtain information about the reduced system of interest by averaging the appropriate observables over the degrees of freedom of the environment. To model the dissipative effects due to the interaction with the environment, the Schrödinger equation is replaced by a suitable master equation, such as a Lindblad equation or a stochastic Schrödinger equation in which the infinite degrees of freedom of the environment are "synthesized" as a few quantum noises. Mathematically, time evolution in a Markovian open quantum system is no longer described by means of one-parameter groups of unitary maps, but one needs to introduce quantum Markov semigroups.

Definitions

=Quantum dynamical semigroup (QDS)=

In general, quantum dynamical semigroups can be defined on von Neumann algebras, so the dimensionality of the system could be infinite. Let \mathcal{A} be a von Neumann algebra acting on Hilbert space \mathcal{H} , a quantum dynamical semigroup on \mathcal{A} is a collection of bounded operators on \mathcal{A} , denoted by \mathcal{T} := \left( \mathcal{T}_t \right)_{t \ge 0} , with the following properties:{{cite journal |last1=Fagnola |first1=Franco |title=Quantum Markov semigroups and quantum flows |journal=Proyecciones |date=1999 |volume=18 |issue=3 |pages=1–144 |doi=10.22199/S07160917.1999.0003.00002 |url=https://www.researchgate.net/publication/247317142|doi-access=free }}

  1. \mathcal{T}_0 \left( a \right) = a , \forall a \in \mathcal{A} ,
  2. \mathcal{T}_{t + s} \left( a \right) = \mathcal{T}_t \left( \mathcal{T}_s \left( a \right) \right) , \forall s, t \ge 0 , \forall a \in \mathcal{A} ,
  3. \mathcal{T}_t is completely positive for all t \ge 0 ,
  4. \mathcal{T}_t is a \sigma -weakly continuous operator in \mathcal{A} for all t \ge 0 ,
  5. For all a \in \mathcal{A} , the map t \mapsto \mathcal{T}_t \left( a \right) is continuous with respect to the \sigma -weak topology on \mathcal{A} .

Under the condition of complete positivity, the operators \mathcal{T}_t are \sigma -weakly continuous if and only if \mathcal{T}_t are normal. Recall that, letting \mathcal{A}_+ denote the convex cone of positive elements in \mathcal{A} , a positive operator T : \mathcal{A} \rightarrow \mathcal{A} is said to be normal if for every increasing net \left( x_\alpha \right)_\alpha in \mathcal{A}_+ with least upper bound x in \mathcal{A}_+ one has

: \lim_{\alpha} \langle u, (T x_\alpha) u \rangle = \sup_{\alpha} \langle u, (T x_\alpha) u \rangle = \langle u, (T x) u \rangle

for each u in a norm-dense linear sub-manifold of \mathcal{H} .

=Quantum Markov semigroup (QMS)=

A quantum dynamical semigroup \mathcal{T} is said to be identity-preserving (or conservative, or Markovian) if

{{NumBlk|:| \mathcal{T}_t \left( \boldsymbol{1} \right) = \boldsymbol{1}, \quad \forall t \ge 0, |{{EquationRef|1}}}}

where \boldsymbol{1} \in \mathcal{A} is the identity element. For simplicity, \mathcal{T} is called quantum Markov semigroup. Notice that, the identity-preserving property and positivity of \mathcal{T}_t imply \left\| \mathcal{T}_t \right\| = 1 for all t \ge 0 and then \mathcal{T} is a contraction semigroup.{{cite book |last1=Bratteli |first1=Ola |last2=Robinson |first2=Derek William |title=Operator algebras and quantum statistical mechanics |date=1987 |publisher=Springer-Verlag |location=New York |isbn=3-540-17093-6 |edition=2nd}}

The Condition ({{EquationNote|1}}) plays an important role not only in the proof of uniqueness and unitarity of solution of a HudsonParthasarathy quantum stochastic differential equation, but also in deducing regularity conditions for paths of classical Markov processes in view of operator theory.{{cite journal |last1=Chebotarev |first1=A.M |last2=Fagnola |first2=F |title=Sufficient Conditions for Conservativity of Minimal Quantum Dynamical Semigroups |journal=Journal of Functional Analysis |date=March 1998 |volume=153 |issue=2 |pages=382–404 |doi=10.1006/jfan.1997.3189|arxiv=funct-an/9711006 |s2cid=18823390 }}

=Infinitesimal generator of QDS=

The infinitesimal generator of a quantum dynamical semigroup \mathcal{T} is the operator \mathcal{L} with domain \operatorname{Dom} (\mathcal{L}) , where

: \operatorname{Dom} \left( \mathcal{L} \right) := \left\{ a \in \mathcal{A} ~\left\vert~ \lim_{t \rightarrow 0} \frac{\mathcal{T}_t(a) - a}{t} = b \text{ in } \sigma\text{-weak topology} \right. \right\}

and \mathcal{L}(a) := b .

Characterization of generators of uniformly continuous QMSs

{{Main|Lindbladian}}

If the quantum Markov semigroup \mathcal{T} is uniformly continuous in addition, which means \lim_{t \rightarrow 0^+} \left\| \mathcal{T}_t - \mathcal{T}_0 \right\| = 0 , then

  • the infinitesimal generator \mathcal{L} will be a bounded operator on von Neumann algebra \mathcal{A} with domain \mathrm{Dom} (\mathcal{L}) = \mathcal{A} ,{{cite book |last1=Rudin |first1=Walter |title=Functional analysis |date=1991 |publisher=McGraw-Hill Science/Engineering/Math |location=New York |isbn=978-0070542365 |edition=Second}}
  • the map t \mapsto \mathcal{T}_t a will automatically be continuous for every a \in \mathcal{A} ,
  • the infinitesimal generator \mathcal{L} will be also \sigma -weakly continuous.{{cite journal |last1=Dixmier |first1=Jacques |title=Les algèbres d'opérateurs dans l'espace hilbertien |journal=Mathematical Reviews (MathSciNet) |date=1957}}

Under such assumption, the infinitesimal generator \mathcal{L} has the characterization{{cite journal |last1=Lindblad |first1=Goran |title=On the generators of quantum dynamical semigroups |journal=Communications in Mathematical Physics |date=1976 |volume=48 |issue=2 |pages=119–130 |doi=10.1007/BF01608499|bibcode=1976CMaPh..48..119L |s2cid=55220796 |url=http://projecteuclid.org/euclid.cmp/1103899849 }}

: \mathcal{L} \left( a \right) = i \left[ H, a \right] + \sum_{j} \left( V_j^\dagger a V_j - \frac{1}{2} \left\{ V_j^\dagger V_j, a \right\} \right)

where a \in \mathcal{A} , V_j \in \mathcal{B} (\mathcal{H}) , \sum_{j} V_j^\dagger V_j \in \mathcal{B} (\mathcal{H}) , and H \in \mathcal{B} (\mathcal{H}) is self-adjoint. Moreover, above \left[ \cdot, \cdot \right] denotes the commutator, and \left\{ \cdot, \cdot \right\} the anti-commutator.

Selected recent publications

  • {{cite journal |last1=Chebotarev |first1=A.M |last2=Fagnola |first2=F |title=Sufficient Conditions for Conservativity of Minimal Quantum Dynamical Semigroups |journal=Journal of Functional Analysis |date=March 1998 |volume=153 |issue=2 |pages=382–404 |doi=10.1006/jfan.1997.3189|arxiv=funct-an/9711006 |s2cid=18823390 }}
  • {{cite journal |last1=Fagnola |first1=Franco |last2=Rebolledo |first2=Rolando |title=Transience and recurrence of quantum Markov semigroups |journal=Probability Theory and Related Fields |date=2003-06-01 |volume=126 |issue=2 |pages=289–306 |doi=10.1007/s00440-003-0268-0|s2cid=123052568 |doi-access=free }}
  • {{cite journal |last1=Rebolledo |first1=R |title=Decoherence of quantum Markov semigroups |journal=Annales de l'Institut Henri Poincaré B |date=May 2005 |volume=41 |issue=3 |pages=349–373 |doi=10.1016/j.anihpb.2004.12.003|bibcode=2005AIHPB..41..349R |url=http://www.numdam.org/item/AIHPB_2005__41_3_349_0/ |hdl=10533/176263 |hdl-access=free }}
  • {{cite journal |last1=Umanità |first1=Veronica |title=Classification and decomposition of Quantum Markov Semigroups |journal=Probability Theory and Related Fields |date=April 2006 |volume=134 |issue=4 |pages=603–623 |doi=10.1007/s00440-005-0450-7|s2cid=119409078 |doi-access=free }}
  • {{cite journal |last1=Fagnola |first1=Franco |last2=Umanità |first2=Veronica |title=Generators of detailed balance quantum markov semigroups |journal=Infinite Dimensional Analysis, Quantum Probability and Related Topics |date=2007-09-01 |volume=10 |issue=3 |pages=335–363 |doi=10.1142/S0219025707002762|arxiv=0707.2147 |s2cid=16690012 }}
  • {{cite journal |last1=Carlen |first1=Eric A. |last2=Maas |first2=Jan |title=Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance |journal=Journal of Functional Analysis |date=September 2017 |volume=273 |issue=5 |pages=1810–1869 |doi=10.1016/j.jfa.2017.05.003|arxiv=1609.01254 |s2cid=119734534 }}

See also

  • {{Annotated link|Operator topologies}}
  • {{Annotated link|Von Neumann algebra}}
  • {{Annotated link|C0 semigroup}}
  • {{Annotated link|Contraction semigroup}}
  • {{Annotated link|Lindbladian}}
  • {{Annotated link|Markov chain}}
  • {{Annotated link|Quantum mechanics}}
  • {{Annotated link|Open quantum system}}

References