positive element

In mathematics, an element of a *-algebra is called positive if it is the sum of elements of the form {{nowrap|a^*a.{{sfn|Palmer|2001|p=798}}}}

Definition

Let \mathcal{A} be a *-algebra. An element a \in \mathcal{A} is called positive if there are finitely many elements a_k \in \mathcal{A} \; (k = 1,2,\ldots,n), so that a = \sum_{k=1}^n a_k^*a_k {{nowrap|holds.{{sfn|Palmer|2001|p=798}}}} This is also denoted by {{nowrap|a \geq 0.{{sfn|Blackadar|2006|p=63}}}}

The set of positive elements is denoted by {{nowrap|\mathcal{A}_+.}}

A special case from particular importance is the case where \mathcal{A} is a complete normed *-algebra, that satisfies the C*-identity (\left\| a^*a \right\| = \left\| a \right\|^2 \ \forall a \in \mathcal{A}), which is called a C*-algebra.

Examples

  • The unit element e of an unital *-algebra is positive.
  • For each element a \in \mathcal{A}, the elements a^* a and aa^* are positive by {{nowrap|definition.{{sfn|Palmer|2001|p=798}}}}

In case \mathcal{A} is a C*-algebra, the following holds:

  • Let a \in \mathcal{A}_N be a normal element, then for every positive function f \geq 0 which is continuous on the spectrum of a the continuous functional calculus defines a positive element {{nowrap|f(a).{{sfn|Kadison|Ringrose|1983|p=271}}}}
  • Every projection, i.e. every element a \in \mathcal{A} for which a = a^* = a^2 holds, is positive. For the spectrum \sigma(a) of such an idempotent element, \sigma(a) \subseteq \{ 0, 1 \} holds, as can be seen from the continuous functional {{nowrap|calculus.{{sfn|Kadison|Ringrose|1983|p=271}}}}

Criteria

Let \mathcal{A} be a C*-algebra and {{nowrap|a \in \mathcal{A}.}} Then the following are equivalent:{{sfn|Kadison|Ringrose|1983|pages=247-248}}

  • For the spectrum \sigma(a) \subseteq [0, \infty) holds and a is a normal element.
  • There exists an element b \in \mathcal{A}, such that {{nowrap|a = bb^*.}}
  • There exists a (unique) self-adjoint element c \in \mathcal{A}_{sa} such that {{nowrap|a = c^2.}}

If \mathcal{A} is a unital *-algebra with unit element e, then in addition the following statements are {{nowrap|equivalent:{{sfn|Kadison|Ringrose|1983|p=245}}}}

  • \left\| te - a \right\| \leq t for every t \geq \left\| a \right\| and a is a self-adjoint element.
  • \left\| te - a \right\| \leq t for some t \geq \left\| a \right\| and a is a self-adjoint element.

Properties

= In *-algebras =

Let \mathcal{A} be a *-algebra. Then:

  • If a \in \mathcal{A}_+ is a positive element, then a is self-adjoint.{{sfn|Palmer|2001|p=800}}
  • The set of positive elements \mathcal{A}_+ is a convex cone in the real vector space of the self-adjoint elements {{nowrap|\mathcal{A}_{sa}.}} This means that \alpha a, a+b \in \mathcal{A}_+ holds for all a,b \in \mathcal{A} and {{nowrap|\alpha \in [0, \infty).{{sfn|Palmer|2001|p=800}}}}
  • If a \in \mathcal{A}_+ is a positive element, then b^*ab is also positive for every element {{nowrap|b \in \mathcal{A}.{{sfn|Blackadar|2006|p=64}}}}
  • For the linear span of \mathcal{A}_+ the following holds: \langle \mathcal{A}_+ \rangle = \mathcal{A}^2 and {{nowrap|\mathcal{A}_+ - \mathcal{A}_+ = \mathcal{A}_{sa} \cap \mathcal{A}^2.{{sfn|Palmer|2001|p=802}}}}

= In C*-algebras =

Let \mathcal{A} be a C*-algebra. Then:

  • Using the continuous functional calculus, for every a \in \mathcal{A}_+ and n \in \mathbb{N} there is a uniquely determined b \in \mathcal{A}_+ that satisfies b^n = a, i.e. a unique n-th root. In particular, a square root exists for every positive element. Since for every b \in \mathcal{A} the element b^*b is positive, this allows the definition of a unique absolute value: {{nowrap||b| = (b^*b)^\frac{1}{2}.{{sfn|Blackadar|2006|pages=63-65}}}}
  • For every real number \alpha \geq 0 there is a positive element a^\alpha \in \mathcal{A}_+ for which a^\alpha a^\beta = a^{\alpha + \beta} holds for all {{nowrap|\beta \in [0, \infty).}} The mapping \alpha \mapsto a^\alpha is continuous. Negative values for \alpha are also possible for invertible elements {{nowrap|a.{{sfn|Blackadar|2006|p=64}}}}
  • Products of commutative positive elements are also positive. So if ab = ba holds for positive a,b \in \mathcal{A}_+, then {{nowrap|ab \in \mathcal{A}_+.{{sfn|Kadison|Ringrose|1983|p=245}}}}
  • Each element a \in \mathcal{A} can be uniquely represented as a linear combination of four positive elements. To do this, a is first decomposed into the self-adjoint real and imaginary parts and these are then decomposed into positive and negative parts using the continuous functional {{nowrap|calculus.{{sfn|Kadison|Ringrose|1983|p=247}}}} For it holds that \mathcal{A}_{sa} = \mathcal{A}_+ - \mathcal{A}_+, since {{nowrap|\mathcal{A}^2 = \mathcal{A}.{{sfn|Palmer|2001|p=802}}}}
  • If both a and -a are positive a = 0 {{nowrap|holds.{{sfn|Kadison|Ringrose|1983|p=245}}}}
  • If \mathcal{B} is a C*-subalgebra of \mathcal{A}, then {{nowrap|\mathcal{B}_+ = \mathcal{B} \cap \mathcal{A}_+.{{sfn|Kadison|Ringrose|1983|p=245}}}}
  • If \mathcal{B} is another C*-algebra and \Phi is a *-homomorphism from \mathcal{A} to \mathcal{B}, then \Phi(\mathcal{A}_+) = \Phi(\mathcal{A}) \cap \mathcal{B}_+ {{nowrap|holds.{{sfn|Dixmier|1977|p=18}}}}
  • If a,b \in \mathcal{A}_+ are positive elements for which ab = 0, they commutate and \left\| a + b \right\| = \max(\left\| a \right\|, \left\| b \right\|) holds. Such elements are called orthogonal and one writes {{nowrap|a \bot b.{{sfn|Blackadar|2006|p=67}}}}

Partial order

Let \mathcal{A} be a *-algebra. The property of being a positive element defines a translation invariant partial order on the set of self-adjoint elements {{nowrap|\mathcal{A}_{sa}.}} If b - a \in \mathcal{A}_+ holds for a,b \in \mathcal{A}, one writes a \leq b or {{nowrap|b \geq a.{{sfn|Palmer|2001|p=799}}}}

This partial order fulfills the properties ta \leq tb and a + c \leq b + c for all a,b,c \in \mathcal{A}_{sa} with {{nowrap|a \leq b and t \in [0, \infty).}}{{sfn|Palmer|2001|p=802}}

If \mathcal{A} is a C*-algebra, the partial order also has the following properties for a,b \in \mathcal{A}:

  • If a \leq b holds, then c^*ac \leq c^*bc is true for every {{nowrap|c \in \mathcal{A}.}} For every c \in \mathcal{A}_+ that commutates with a and b even ac \leq bc {{nowrap|holds.{{sfn|Kadison|Ringrose|1983|p=249}}}}
  • If -b \leq a \leq b holds, then {{nowrap|\left\| a \right\| \leq \left\| b \right\|.{{sfn|Kadison|Ringrose|1983|p=250}}}}
  • If 0 \leq a \leq b holds, then a^\alpha \leq b^\alpha holds for all real numbers {{nowrap|0 < \alpha \leq 1.{{sfn|Blackadar|2006|p=66}}}}
  • If a is invertible and 0 \leq a \leq b holds, then b is invertible and for the inverses b^{-1} \leq a^{-1} {{nowrap|holds.{{sfn|Kadison|Ringrose|1983|p=250}}}}

See also

Citations

=References=

{{reflist}}

= Bibliography =

{{refbegin|30em}}

  • {{cite book |last=Blackadar|first=Bruce |title=Operator Algebras. Theory of C*-Algebras and von Neumann Algebras |publisher=Springer |location=Berlin/Heidelberg |year=2006 |isbn=3-540-28486-9 }}
  • {{cite book |last=Dixmier |first=Jacques |title=C*-algebras |publisher=North-Holland |location=Amsterdam/New York/Oxford |year=1977 |isbn=0-7204-0762-1 |translator-last=Jellett |translator-first=Francis }} English translation of {{cite book |display-authors=0 |last=Dixmier |first=Jacques |title=Les C*-algèbres et leurs représentations |language=fr |publisher=Gauthier-Villars |year=1969 }}
  • {{cite book |last1=Kadison |first1=Richard V. |last2=Ringrose |first2=John R. |title=Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. |publisher=Academic Press |location=New York/London |year=1983 |isbn=0-12-393301-3}}
  • {{cite book |last=Palmer|first=Theodore W. |title=Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. |publisher=Cambridge university press |year=2001 |isbn=0-521-36638-0 }}

{{refend}}

{{SpectralTheory}}

Category:Abstract algebra

Category:C*-algebras