Quantum double model

{{technical|date=July 2024}}

{{Orphan|date=July 2024}}

In condensed matter physics and quantum information theory, the quantum double model, proposed by Alexei Kitaev, is a lattice model that exhibits topological excitations.{{Cite journal |last=Kitaev |first=A. Yu. |date=2003-01-01 |title=Fault-tolerant quantum computation by anyons |url=https://www.sciencedirect.com/science/article/pii/S0003491602000180 |journal=Annals of Physics |volume=303 |issue=1 |pages=2–30 |doi=10.1016/S0003-4916(02)00018-0 |issn=0003-4916|arxiv=quant-ph/9707021 |bibcode=2003AnPhy.303....2K }} This model can be regarded as a lattice gauge theory, and it has applications in many fields, like topological quantum computation, topological order, topological quantum memory, quantum error-correcting code, etc. The name "quantum double" come from the Drinfeld double of a finite groups and Hopf algebras.{{Cite journal |last=Drinfel'd |first=V. G. |date=1988-04-01 |title=Quantum groups |url=https://doi.org/10.1007/BF01247086 |journal=Journal of Soviet Mathematics |language=en |volume=41 |issue=2 |pages=898–915 |doi=10.1007/BF01247086 |issn=1573-8795}} The most well-known example is the toric code model, which is a special case of quantum double model by setting input group as cyclic group \mathbb{Z}_2.

Kitaev quantum double model

{{unreferenced section|date= July 2024}}

The input data for Kitaev quantum double is a finite group G. Consider a directed lattice \Sigma, we put a Hilbert space \mathbb{C}[G] spanned by group elements on each edge, there are four types of edge operators

L_+^g|h\rangle =|gh\rangle, L_-^g|h\rangle =|hg^{-1}\rangle,

T_+^g|h\rangle =\delta_{g,h}|h\rangle, T_-^g|h\rangle =\delta_{g^{-1},h}|h\rangle.

For each vertex connecting to m edges e_1,\ldots,e_m, there is a vertex operator

A_v=\frac{1}

G
\sum_{g\in G}L^g(e_1)\otimes\ldots\otimes L^g(e_m).

Notice each edge has an orientation: when v is the starting point of e_k, the operator is set as L_-, otherwise, it is set as L_+.

For each face surrounded by m edges e_1,\ldots,e_m, there is a face operator

B_f=\sum_{h_1\cdots h_m=1_G}\prod_{k=1}^m T^{h_k}(e_k).

Similar to the vertex operator, due to the orientation of the edge, when face f is on the right-hand side when traversing the positive direction of e, we set T_+; otherwise, we set T_{-} in the above expression. Also, note that the order of edges surrounding the face is assumed to be counterclockwise.

The lattice Hamiltonian of quantum double model is given by

H=-\sum_v A_v-\sum_f B_f.

Both of A_v and B_f are Hermitian projectors, they are stabilizer when regard the model is a quantum error correcting code.

The topological excitations of the model is characterized by the representations of the quantum double of finite group G. The anyon types are given by irreducible representations. For the lattice model, the topological excitations are created by ribbon operators.{{Cite journal |last1=Bombin |first1=H. |last2=Martin-Delgado |first2=M. A. |date=2008-09-22 |title=Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement |url=https://link.aps.org/doi/10.1103/PhysRevB.78.115421 |journal=Physical Review B |volume=78 |issue=11 |pages=115421 |doi=10.1103/PhysRevB.78.115421|arxiv=0712.0190 |bibcode=2008PhRvB..78k5421B }}

The gapped boundary theory of quantum double model can be constructed based on subgroups of G.{{Cite journal |last1=Beigi |first1=Salman |last2=Shor |first2=Peter W. |last3=Whalen |first3=Daniel |date=2011-09-01 |title=The Quantum Double Model with Boundary: Condensations and Symmetries |url=https://doi.org/10.1007/s00220-011-1294-x |journal=Communications in Mathematical Physics |language=en |volume=306 |issue=3 |pages=663–694 |doi=10.1007/s00220-011-1294-x |arxiv=1006.5479 |bibcode=2011CMaPh.306..663B |hdl=1721.1/71667 |issn=1432-0916}}{{Cite journal |last1=Jia |first1=Zhian |last2=Kaszlikowski |first2=Dagomir |last3=Tan |first3=Sheng |date=2023-07-21 |title=Boundary and domain wall theories of 2d generalized quantum double model |journal=Journal of High Energy Physics |language=en |volume=2023 |issue=7 |pages=160 |doi=10.1007/JHEP07(2023)160 |issn=1029-8479|doi-access=free |arxiv=2207.03970 |bibcode=2023JHEP...07..160J }}{{Cite journal |last1=Cong |first1=Iris |last2=Cheng |first2=Meng |last3=Wang |first3=Zhenghan |date=2017-10-01 |title=Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter |url=https://doi.org/10.1007/s00220-017-2960-4 |journal=Communications in Mathematical Physics |language=en |volume=355 |issue=2 |pages=645–689 |doi=10.1007/s00220-017-2960-4 |arxiv=1707.04564 |bibcode=2017CMaPh.355..645C |issn=1432-0916}} There is a boundary-bulk duality for this model.

The topological excitation of the model is equivalent to that of the Levin-Wen string-net model with input given by the representation category of finite group G.

Hopf quantum double model

The quantum double model can be generalized to the case where the input data is given by a C* Hopf algebra.{{Cite journal |last1=Buerschaper |first1=Oliver |last2=Mombelli |first2=Juan Martín |last3=Christandl |first3=Matthias |last4=Aguado |first4=Miguel |date=2013-01-01 |title=A hierarchy of topological tensor network states |url=https://doi.org/10.1063/1.4773316 |journal=Journal of Mathematical Physics |volume=54 |issue=1 |page=012201 |doi=10.1063/1.4773316 |issn=0022-2488|arxiv=1007.5283 |bibcode=2013JMP....54a2201B }} In this case, the face and vertex operators are constructed using the comultiplication of Hopf algebra. For each vertex, the Haar integral of the input Hopf algebra is used to construct the vertex operator. For each face, the Haar integral of the dual Hopf algebra of the input Hopf algebra is used to construct the face operator.

The topological excitation are created by ribbon operators.{{Cite journal |last1=Yan |first1=Bowen |last2=Chen |first2=Penghua |last3=Cui |first3=Shawn X |date=2022-05-06 |title=Ribbon operators in the generalized Kitaev quantum double model based on Hopf algebras |url=https://iopscience.iop.org/article/10.1088/1751-8121/ac552c |journal=Journal of Physics A: Mathematical and Theoretical |volume=55 |issue=18 |pages=185201 |doi=10.1088/1751-8121/ac552c |issn=1751-8113|arxiv=2105.08202 |bibcode=2022JPhA...55r5201Y }}{{Cite journal |last=Meusburger |first=Catherine |date=2017-07-01 |title=Kitaev Lattice Models as a Hopf Algebra Gauge Theory |url=https://doi.org/10.1007/s00220-017-2860-7 |journal=Communications in Mathematical Physics |language=en |volume=353 |issue=1 |pages=413–468 |doi=10.1007/s00220-017-2860-7 |arxiv=1607.01144 |bibcode=2017CMaPh.353..413M |issn=1432-0916}}

Weak Hopf quantum double model

A more general case arises when the input data is chosen as a weak Hopf algebra, resulting in the weak Hopf quantum double model.{{Cite journal |last1=Jia |first1=Zhian |last2=Tan |first2=Sheng |last3=Kaszlikowski |first3=Dagomir |last4=Chang |first4=Liang |date=2023-09-01 |title=On Weak Hopf Symmetry and Weak Hopf Quantum Double Model |url=https://doi.org/10.1007/s00220-023-04792-9 |journal=Communications in Mathematical Physics |language=en |volume=402 |issue=3 |pages=3045–3107 |doi=10.1007/s00220-023-04792-9 |arxiv=2302.08131 |bibcode=2023CMaPh.402.3045J |issn=1432-0916}}{{Cite journal |last=Chang |first=Liang |date=2014-04-01 |title=Kitaev models based on unitary quantum groupoids |url=https://doi.org/10.1063/1.4869326 |journal=Journal of Mathematical Physics |volume=55 |issue=4 |page=041703 |doi=10.1063/1.4869326 |issn=0022-2488|arxiv=1309.4181 |bibcode=2014JMP....55d1703C }}

References