Rectified 6-orthoplexes#Rectified 6-orthoplex
class=wikitable align=right width=360 style="margin-left:1em;" |
align=center
|120px |120px |120px |
align=center
|120px |120px |120px |
colspan=4|Orthogonal projections in B6 Coxeter plane |
---|
In six-dimensional geometry, a rectified 6-orthoplex is a convex uniform 6-polytope, being a rectification of the regular 6-orthoplex.
There are unique 6 degrees of rectifications, the zeroth being the 6-orthoplex, and the 6th and last being the 6-cube. Vertices of the rectified 6-orthoplex are located at the edge-centers of the 6-orthoplex. Vertices of the birectified 6-orthoplex are located in the triangular face centers of the 6-orthoplex.
{{clear}}
Rectified 6-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Rectified hexacross | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbols | t1{34,4} or r{34,4} r{3,3,3,31,1} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node|3|node|3|node|4|node}} = {{CDD|node_1|split1|nodes|3a|nodea|3a|nodea|4a|nodea}} {{CDD|node|3|node_1|3|node|3|node|split1|nodes}} = {{CDD|nodes|3ab|nodes_10lr|split5c|nodes}} |
bgcolor=#e7dcc3|5-faces | 76 total: 64 rectified 5-simplex 12 5-orthoplex |
bgcolor=#e7dcc3|4-faces | 576 total: 192 rectified 5-cell 384 5-cell |
bgcolor=#e7dcc3|Cells | 1200 total: 240 octahedron 960 tetrahedron |
bgcolor=#e7dcc3|Faces | 1120 total: 160 and 960 triangles |
bgcolor=#e7dcc3|Edges | 480 |
bgcolor=#e7dcc3|Vertices | 60 |
bgcolor=#e7dcc3|Vertex figure | 16-cell prism |
bgcolor=#e7dcc3|Petrie polygon | Dodecagon |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The rectified 6-orthoplex is the vertex figure for the demihexeractic honeycomb.
:{{CDD|nodes_10ru|split2|node|3|node|3|node|split1|nodes}} or {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|4|node}}
= Alternate names =
- rectified hexacross
- rectified hexacontitetrapeton (acronym: rag) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/rag.htm (o3x3o3o3o4o - rag)]}}
= Construction =
There are two Coxeter groups associated with the rectified hexacross, one with the C6 or [4,3,3,3,3] Coxeter group, and a lower symmetry with two copies of pentacross facets, alternating, with the D6 or [33,1,1] Coxeter group.
= Cartesian coordinates =
Cartesian coordinates for the vertices of a rectified hexacross, centered at the origin, edge length are all permutations of:
: (±1,±1,0,0,0,0)
= Images =
{{6-cube Coxeter plane graphs|t4|150}}
= Root vectors =
The 60 vertices represent the root vectors of the simple Lie group D6. The vertices can be seen in 3 hyperplanes, with the 15 vertices rectified 5-simplices cells on opposite sides, and 30 vertices of an expanded 5-simplex passing through the center. When combined with the 12 vertices of the 6-orthoplex, these vertices represent the 72 root vectors of the B6 and C6 simple Lie groups.
The 60 roots of D6 can be geometrically folded into H3 (Icosahedral symmetry), as {{CDD|nodes|3ab|nodes_10lr|split5c|nodes}} to {{CDD|node|3|node_1|5|node}}, creating 2 copies of 30-vertex icosidodecahedra, with the Golden ratio between their radii:[https://blogs.ams.org/visualinsight/2015/01/01/icosidodecahedron-from-projected-d6-root-polytope Icosidodecahedron from D6] John Baez, January 1, 2015
class=wikitable |
colspan=2|Rectified 6-orthoplex
!2 icosidodecahedra |
---|
3D (H3 projection)
!A4/B5/D6 Coxeter plane !H2 Coxeter plane |
160px |
Birectified 6-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Birectified 6-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbols | t2{34,4} or 2r{34,4} t2{3,3,3,31,1} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node|3|node|4|node}} = {{CDD|node_1|split1|nodes|3ab|nodes|4a|nodea}} {{CDD|node|3|node|3|node_1|3|node|split1|nodes}} = {{CDD|nodes|3ab|nodes|split5c|nodes_01l}} |
bgcolor=#e7dcc3|5-faces | 76 |
bgcolor=#e7dcc3|4-faces | 636 |
bgcolor=#e7dcc3|Cells | 2160 |
bgcolor=#e7dcc3|Faces | 2880 |
bgcolor=#e7dcc3|Edges | 1440 |
bgcolor=#e7dcc3|Vertices | 160 |
bgcolor=#e7dcc3|Vertex figure | {3}×{3,4} duoprism |
bgcolor=#e7dcc3|Petrie polygon | Dodecagon |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The birectified 6-orthoplex can tessellation space in the trirectified 6-cubic honeycomb.
= Alternate names =
- birectified hexacross
- birectified hexacontitetrapeton (acronym: brag) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/brag.htm (o3o3x3o3o4o - brag)]}}
= Cartesian coordinates =
Cartesian coordinates for the vertices of a rectified hexacross, centered at the origin, edge length are all permutations of:
: (±1,±1,±1,0,0,0)
= Images =
{{6-cube Coxeter plane graphs|t3|150}}
It can also be projected into 3D-dimensions as {{CDD|nodes|3ab|nodes|split5c|nodes_01l}} → {{CDD|node|3|node|5|node_1}}, a dodecahedron envelope.
Related polytopes
These polytopes are a part a family of 63 Uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
{{Hexeract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} o3x3o3o3o4o - rag, o3o3x3o3o4o - brag {{sfn whitelist| CITEREFKlitzing}}
External links
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{polytopes}}