Rectified 8-orthoplexes#Rectified 8-orthoplex
class=wikitable align=right width=400 style="margin-left:1em;" |
align=center
|100px |100px |100px |100px |
align=center
|100px |100px |100px |100px |
colspan=4|Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a rectified 8-orthoplex is a convex uniform 8-polytope, being a rectification of the regular 8-orthoplex.
There are unique 8 degrees of rectifications, the zeroth being the 8-orthoplex, and the 7th and last being the 8-cube. Vertices of the rectified 8-orthoplex are located at the edge-centers of the 8-orthoplex. Vertices of the birectified 8-orthoplex are located in the triangular face centers of the 8-orthoplex. Vertices of the trirectified 8-orthoplex are located in the tetrahedral cell centers of the 8-orthoplex.
Rectified 8-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Rectified 8-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t1{3,3,3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}} {{CDD|node|3|node_1|3|node|3|node|3|node|3|node|split1|nodes}} |
bgcolor=#e7dcc3|7-faces | 272 |
bgcolor=#e7dcc3|6-faces | 3072 |
bgcolor=#e7dcc3|5-faces | 8960 |
bgcolor=#e7dcc3|4-faces | 12544 |
bgcolor=#e7dcc3|Cells | 10080 |
bgcolor=#e7dcc3|Faces | 4928 |
bgcolor=#e7dcc3|Edges | 1344 |
bgcolor=#e7dcc3|Vertices | 112 |
bgcolor=#e7dcc3|Vertex figure | 6-orthoplex prism |
bgcolor=#e7dcc3|Petrie polygon | hexakaidecagon |
bgcolor=#e7dcc3|Coxeter groups | C8, [4,36] D8, [35,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The rectified 8-orthoplex has 112 vertices. These represent the root vectors of the simple Lie group D8. The vertices can be seen in 3 hyperplanes, with the 28 vertices rectified 7-simplexs cells on opposite sides, and 56 vertices of an expanded 7-simplex passing through the center. When combined with the 16 vertices of the 8-orthoplex, these vertices represent the 128 root vectors of the B8 and C8 simple Lie groups.
= Related polytopes =
The rectified 8-orthoplex is the vertex figure for the demiocteractic honeycomb.
: {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|split1|nodes}} or {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|4|node}}
= Alternate names=
- rectified octacross
- rectified diacosipentacontahexazetton (Acronym: rek) (Jonathan Bowers)Klitzing, (o3x3o3o3o3o3o4o - rek)
= Construction =
There are two Coxeter groups associated with the rectified 8-orthoplex, one with the C8 or [4,36] Coxeter group, and a lower symmetry with two copies of heptcross facets, alternating, with the D8 or [35,1,1] Coxeter group.
= Cartesian coordinates =
Cartesian coordinates for the vertices of a rectified 8-orthoplex, centered at the origin, edge length are all permutations of:
: (±1,±1,0,0,0,0,0,0)
= Images =
{{8-cube Coxeter plane graphs|t6|150}}
Birectified 8-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Birectified 8-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t2{3,3,3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|4|node}} {{CDD|node|3|node|3|node_1|3|node|3|node|3|node|split1|nodes}} |
bgcolor=#e7dcc3|7-faces | 272 |
bgcolor=#e7dcc3|6-faces | 3184 |
bgcolor=#e7dcc3|5-faces | 16128 |
bgcolor=#e7dcc3|4-faces | 34048 |
bgcolor=#e7dcc3|Cells | 36960 |
bgcolor=#e7dcc3|Faces | 22400 |
bgcolor=#e7dcc3|Edges | 6720 |
bgcolor=#e7dcc3|Vertices | 448 |
bgcolor=#e7dcc3|Vertex figure | {3,3,3,4}x{3} |
bgcolor=#e7dcc3|Coxeter groups | C8, [3,3,3,3,3,3,4] D8, [35,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names=
- birectified octacross
- birectified diacosipentacontahexazetton (Acronym: bark) (Jonathan Bowers)Klitzing, (o3o3x3o3o3o3o4o - bark)
= Cartesian coordinates =
Cartesian coordinates for the vertices of a birectified 8-orthoplex, centered at the origin, edge length are all permutations of:
: (±1,±1,±1,0,0,0,0,0)
= Images =
{{8-cube Coxeter plane graphs|t5|150}}
Trirectified 8-orthoplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Trirectified 8-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t3{3,3,3,3,3,3,4} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|4|node}} {{CDD|node|3|node|3|node|3|node_1|3|node|3|node|split1|nodes}} |
bgcolor=#e7dcc3|7-faces | 16+256 |
bgcolor=#e7dcc3|6-faces | 1024 + 2048 + 112 |
bgcolor=#e7dcc3|5-faces | 1792 + 7168 + 7168 + 448 |
bgcolor=#e7dcc3|4-faces | 1792 + 10752 + 21504 + 14336 |
bgcolor=#e7dcc3|Cells | 8960 + 126880 + 35840 |
bgcolor=#e7dcc3|Faces | 17920 + 35840 |
bgcolor=#e7dcc3|Edges | 17920 |
bgcolor=#e7dcc3|Vertices | 1120 |
bgcolor=#e7dcc3|Vertex figure | {3,3,4}x{3,3} |
bgcolor=#e7dcc3|Coxeter groups | C8, [3,3,3,3,3,3,4] D8, [35,1,1] |
bgcolor=#e7dcc3|Properties | convex |
The trirectified 8-orthoplex can tessellate space in the quadrirectified 8-cubic honeycomb.
= Alternate names=
- trirectified octacross
- trirectified diacosipentacontahexazetton (acronym: tark) (Jonathan Bowers)Klitzing, (o3o3o3x3o3o3o4o - tark)
= Cartesian coordinates =
Cartesian coordinates for the vertices of a trirectified 8-orthoplex, centered at the origin, edge length are all permutations of:
: (±1,±1,±1,±1,0,0,0,0)
= Images =
{{8-cube Coxeter plane graphs|t4|150}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} o3x3o3o3o3o3o4o - rek, o3o3x3o3o3o3o4o - bark, o3o3o3x3o3o3o4o - tark
External links
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}