Rectified 8-simplexes#Birectified 8-simplex
class=wikitable align=right style="margin-left:1em;" |
align=center valign=top
|150px |150px |
align=center valign=top
|150px |150px |
colspan=4|Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.
There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are located at the edge-centers of the 8-simplex. Vertices of the birectified 8-simplex are located in the triangular face centers of the 8-simplex. Vertices of the trirectified 8-simplex are located in the tetrahedral cell centers of the 8-simplex.
{{clear}}
Rectified 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Rectified 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Coxeter symbol | 061 |
style="background:#e7dcc3;"|Schläfli symbol | t1{37} r{37} = {36,1} or |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}} or {{CDD|node_1|split1|nodes|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}} |
style="background:#e7dcc3;"|7-faces | 18 |
style="background:#e7dcc3;"|6-faces | 108 |
style="background:#e7dcc3;"|5-faces | 336 |
style="background:#e7dcc3;"|4-faces | 630 |
style="background:#e7dcc3;"|Cells | 756 |
style="background:#e7dcc3;"|Faces | 588 |
style="background:#e7dcc3;"|Edges | 252 |
style="background:#e7dcc3;"|Vertices | 36 |
style="background:#e7dcc3;"|Vertex figure | 7-simplex prism, {}×{3,3,3,3,3} |
style="background:#e7dcc3;"|Petrie polygon | enneagon |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S{{supsub|1|8}}. It is also called 06,1 for its branching Coxeter-Dynkin diagram, shown as {{CDD|node_1|split1|nodes|3a|nodea|3a|nodea|3a|nodea|3a|nodea|3a|nodea}}.
= Coordinates =
The Cartesian coordinates of the vertices of the rectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t1|120}}
{{-}}
Birectified 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="280"
! style="background:#e7dcc3;" colspan="2"|Birectified 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Coxeter symbol | 052 |
style="background:#e7dcc3;"|Schläfli symbol | t2{37} 2r{37} = {35,2} or |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}} or {{CDD|node_1|split1|nodes|3ab|nodes|3a|nodea|3a|nodea|3a|nodea}} |
style="background:#e7dcc3;"|7-faces | 18 |
style="background:#e7dcc3;"|6-faces | 144 |
style="background:#e7dcc3;"|5-faces | 588 |
style="background:#e7dcc3;"|4-faces | 1386 |
style="background:#e7dcc3;"|Cells | 2016 |
style="background:#e7dcc3;"|Faces | 1764 |
style="background:#e7dcc3;"|Edges | 756 |
style="background:#e7dcc3;"|Vertices | 84 |
style="background:#e7dcc3;"|Vertex figure | {3}×{3,3,3,3} |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S{{supsub|2|8}}. It is also called 05,2 for its branching Coxeter-Dynkin diagram, shown as {{CDD|node_1|split1|nodes|3ab|nodes|3a|nodea|3a|nodea|3a|nodea}}.
The birectified 8-simplex is the vertex figure of the 152 honeycomb.
= Coordinates =
The Cartesian coordinates of the vertices of the birectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t2|120}}
Trirectified 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="280"
! style="background:#e7dcc3;" colspan="2"|Trirectified 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
bgcolor=#e7dcc3|Coxeter symbol | 043 |
style="background:#e7dcc3;"|Schläfli symbol | t3{37} 3r{37} = {34,3} or |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}} or {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|3a|nodea}} |
style="background:#e7dcc3;"|7-faces | 9 + 9 |
style="background:#e7dcc3;"|6-faces | 36 + 72 + 36 |
style="background:#e7dcc3;"|5-faces | 84 + 252 + 252 + 84 |
style="background:#e7dcc3;"|4-faces | 126 + 504 + 756 + 504 |
style="background:#e7dcc3;"|Cells | 630 + 1260 + 1260 |
style="background:#e7dcc3;"|Faces | 1260 + 1680 |
style="background:#e7dcc3;"|Edges | 1260 |
style="background:#e7dcc3;"|Vertices | 126 |
style="background:#e7dcc3;"|Vertex figure | {3,3}×{3,3,3} |
style="background:#e7dcc3;"|Petrie polygon | enneagon |
style="background:#e7dcc3;"|Coxeter group | A7, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S{{supsub|3|8}}. It is also called 04,3 for its branching Coxeter-Dynkin diagram, shown as {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|3a|nodea}}.
= Coordinates =
The Cartesian coordinates of the vertices of the trirectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t3|120}}
Related polytopes
This polytope is the vertex figure of the 9-demicube, and the edge figure of the uniform 261 honeycomb.
It is also one of 135 uniform 8-polytopes with A8 symmetry.
{{Enneazetton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyzetta.htm|8D|Uniform polytopes (polyzetta)}} o3x3o3o3o3o3o3o - rene, o3o3x3o3o3o3o3o - brene, o3o3o3x3o3o3o3o - trene
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}