Rectified 9-simplexes#Birectified 9-simplex
class=wikitable align=right style="margin-left:1em;" |
align=center valign=top
|150px |150px |
align=center valign=top
|150px |150px |150px |
colspan=4|Orthogonal projections in A9 Coxeter plane |
---|
In nine-dimensional geometry, a rectified 9-simplex is a convex uniform 9-polytope, being a rectification of the regular 9-simplex.
These polytopes are part of a family of 271 uniform 9-polytopes with A9 symmetry.
There are unique 4 degrees of rectifications. Vertices of the rectified 9-simplex are located at the edge-centers of the 9-simplex. Vertices of the birectified 9-simplex are located in the triangular face centers of the 9-simplex. Vertices of the trirectified 9-simplex are located in the tetrahedral cell centers of the 9-simplex. Vertices of the quadrirectified 9-simplex are located in the 5-cell centers of the 9-simplex.
Rectified 9-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Rectified 9-simplex | |
style="background:#e7dcc3;"|Type | uniform 9-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t1{3,3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|8-faces | 20 |
style="background:#e7dcc3;"|7-faces | 135 |
style="background:#e7dcc3;"|6-faces | 480 |
style="background:#e7dcc3;"|5-faces | 1050 |
style="background:#e7dcc3;"|4-faces | 1512 |
style="background:#e7dcc3;"|Cells | 1470 |
style="background:#e7dcc3;"|Faces | 960 |
style="background:#e7dcc3;"|Edges | 360 |
style="background:#e7dcc3;"|Vertices | 45 |
style="background:#e7dcc3;"|Vertex figure | 8-simplex prism |
style="background:#e7dcc3;"|Petrie polygon | decagon |
style="background:#e7dcc3;"|Coxeter groups | A9, [3,3,3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
The rectified 9-simplex is the vertex figure of the 10-demicube.
= Alternate names=
- Rectified decayotton (reday) (Jonathan Bowers)Klitzing, (o3x3o3o3o3o3o3o3o - reday)
= Coordinates =
The Cartesian coordinates of the vertices of the rectified 9-simplex can be most simply positioned in 10-space as permutations of (0,0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 10-orthoplex.
= Images =
{{A9 Coxeter plane graphs|t1|100}}
Birectified 9-simplex
class="wikitable" align="right" style="margin-left:10px" width="280"
! style="background:#e7dcc3;" colspan="2"|Birectified 9-simplex | |
style="background:#e7dcc3;"|Type | uniform 9-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t2{3,3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|8-faces | |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 1260 |
style="background:#e7dcc3;"|Vertices | 120 |
style="background:#e7dcc3;"|Vertex figure | {3}×{3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter groups | A9, [3,3,3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
This polytope is the vertex figure for the 162 honeycomb. Its 120 vertices represent the kissing number of the related hyperbolic 9-dimensional sphere packing.
= Alternate names=
- Birectified decayotton (breday) (Jonathan Bowers)Klitzing, (o3o3x3o3o3o3o3o3o - breday)
= Coordinates =
The Cartesian coordinates of the vertices of the birectified 9-simplex can be most simply positioned in 10-space as permutations of (0,0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 10-orthoplex.
= Images =
{{A9 Coxeter plane graphs|t2|100}}
Trirectified 9-simplex
class="wikitable" align="right" style="margin-left:10px" width="280"
! style="background:#e7dcc3;" colspan="2"|Trirectified 9-simplex | |
style="background:#e7dcc3;"|Type | uniform 9-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t3{3,3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|8-faces | |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | |
style="background:#e7dcc3;"|Vertices | |
style="background:#e7dcc3;"|Vertex figure | {3,3}×{3,3,3,3} |
style="background:#e7dcc3;"|Coxeter groups | A9, [3,3,3,3,3,3,3,3] |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Trirectified decayotton (treday) (Jonathan Bowers)Klitzing, (o3o3o3x3o3o3o3o3o - treday)
= Coordinates =
The Cartesian coordinates of the vertices of the trirectified 9-simplex can be most simply positioned in 10-space as permutations of (0,0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 10-orthoplex.
= Images =
{{A9 Coxeter plane graphs|t3|100}}
Quadrirectified 9-simplex
class="wikitable" align="right" style="margin-left:10px" width="280"
! style="background:#e7dcc3;" colspan="2"|Quadrirectified 9-simplex | |
style="background:#e7dcc3;"|Type | uniform 9-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t4{3,3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}} or {{CDD|node_1|split1|nodes|3ab|nodes|3ab|nodes|3ab|nodes}} |
style="background:#e7dcc3;"|8-faces | |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | |
style="background:#e7dcc3;"|Vertices | |
style="background:#e7dcc3;"|Vertex figure | {3,3,3}×{3,3,3} |
style="background:#e7dcc3;"|Coxeter groups | A9×2, |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Quadrirectified decayotton
- Icosayotton (icoy) (Jonathan Bowers)Klitzing, (o3o3o3o3x3o3o3o3o - icoy)
= Coordinates =
The Cartesian coordinates of the vertices of the quadrirectified 9-simplex can be most simply positioned in 10-space as permutations of (0,0,0,0,0,1,1,1,1,1). This construction is based on facets of the quadrirectified 10-orthoplex.
= Images =
{{A9 Coxeter plane graphs|t4|100}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
- {{KlitzingPolytopes|polyyotta.htm|9D|uniform polytopes (polyyotta)}} o3x3o3o3o3o3o3o3o - reday, o3o3x3o3o3o3o3o3o - breday, o3o3o3x3o3o3o3o3o - treday, o3o3o3o3x3o3o3o3o - icoy
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}