Runcinated 5-simplexes#Runcinated 5-simplex
class=wikitable align=right width=450 style="margin-left:1em;" |
align=center valign=top
|150px |150px |150px |
align=center valign=top
|150px |150px |150px |
colspan=3|Orthogonal projections in A5 Coxeter plane |
---|
In six-dimensional geometry, a runcinated 5-simplex is a convex uniform 5-polytope with 3rd order truncations (Runcination) of the regular 5-simplex.
There are 4 unique runcinations of the 5-simplex with permutations of truncations, and cantellations.
{{clear}}
Runcinated 5-simplex
class="wikitable" align="right" style="margin-left:10px" width="250" | ||
bgcolor=#e7dcc3 align=center colspan=3|Runcinated 5-simplex | ||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| t0,3{3,3,3,3} | ||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|3|node | 3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces
|47 |6 t0,3{3,3,3} 20px | ||
bgcolor=#e7dcc3|Cells
|255 | ||
bgcolor=#e7dcc3|Faces
|420 | ||
bgcolor=#e7dcc3|Edges
|colspan=2|270 | ||
bgcolor=#e7dcc3|Vertices
|colspan=2|60 | ||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|50px | ||
bgcolor=#e7dcc3|Coxeter group
|colspan=2| A5 [3,3,3,3], order 720 | ||
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
= Alternate names =
- Runcinated hexateron
- Small prismated hexateron (Acronym: spix) (Jonathan Bowers)Klitizing, (x3o3o3x3o - spidtix)
= Coordinates =
The vertices of the runcinated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,0,1,1,1,2) or of (0,1,1,1,2,2), seen as facets of a runcinated 6-orthoplex, or a biruncinated 6-cube respectively.
= Images =
{{5-simplex Coxeter plane graphs|t03|150}}
Runcitruncated 5-simplex
class="wikitable" align="right" style="margin-left:10px" width="280" | ||
bgcolor=#e7dcc3 align=center colspan=3|Runcitruncated 5-simplex | ||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2|t0,1,3{3,3,3,3} | ||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|3|node_1 | 3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces
|47 |6 t0,1,3{3,3,3} | ||
bgcolor=#e7dcc3|Cells
|315 | | ||
bgcolor=#e7dcc3|Faces
|720 | | ||
bgcolor=#e7dcc3|Edges
|colspan=2|630 | ||
bgcolor=#e7dcc3|Vertices
|colspan=2|180 | ||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|110px | ||
bgcolor=#e7dcc3|Coxeter group
|colspan=2|A5 [3,3,3,3], order 720 | ||
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Runcitruncated hexateron
- Prismatotruncated hexateron (Acronym: pattix) (Jonathan Bowers)Klitizing, (x3x3o3x3o - pattix)
= Coordinates =
The coordinates can be made in 6-space, as 180 permutations of:
: (0,0,1,1,2,3)
This construction exists as one of 64 orthant facets of the runcitruncated 6-orthoplex.
= Images =
{{5-simplex Coxeter plane graphs|t013|150}}
Runcicantellated 5-simplex
class="wikitable" align="right" style="margin-left:10px" width="280" | ||
bgcolor=#e7dcc3 align=center colspan=3|Runcicantellated 5-simplex | ||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2|t0,2,3{3,3,3,3} | ||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|3|node | 3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces
|47 | | ||
bgcolor=#e7dcc3|Cells
|255 | | ||
bgcolor=#e7dcc3|Faces
|570 | | ||
bgcolor=#e7dcc3|Edges
|colspan=2|540 | ||
bgcolor=#e7dcc3|Vertices
|colspan=2|180 | ||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|100px | ||
bgcolor=#e7dcc3|Coxeter group
|colspan=2|A5 [3,3,3,3], order 720 | ||
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Runcicantellated hexateron
- Biruncitruncated 5-simplex/hexateron
- Prismatorhombated hexateron (Acronym: pirx) (Jonathan Bowers)Klitizing, (x3o3x3x3o - pirx)
= Coordinates =
The coordinates can be made in 6-space, as 180 permutations of:
: (0,0,1,2,2,3)
This construction exists as one of 64 orthant facets of the runcicantellated 6-orthoplex.
= Images =
{{5-simplex Coxeter plane graphs|t023|150}}
Runcicantitruncated 5-simplex
class="wikitable" align="right" style="margin-left:10px" width="280" | ||
bgcolor=#e7dcc3 align=center colspan=3|Runcicantitruncated 5-simplex | ||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2|t0,1,2,3{3,3,3,3} | ||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|3|node_1 | 3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces
|47 |6 t0,1,2,3{3,3,3} | ||
bgcolor=#e7dcc3|Cells
|315 |45 t0,1,2{3,3} | ||
bgcolor=#e7dcc3|Faces
|810 |120 {3} | ||
bgcolor=#e7dcc3|Edges
|colspan=2|900 | ||
bgcolor=#e7dcc3|Vertices
|colspan=2|360 | ||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|100px | ||
bgcolor=#e7dcc3|Coxeter group
|colspan=2|A5 [3,3,3,3], order 720 | ||
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Runcicantitruncated hexateron
- Great prismated hexateron (Acronym: gippix) (Jonathan Bowers)Klitizing, (x3x3x3x3o - gippix)
= Coordinates =
The coordinates can be made in 6-space, as 360 permutations of:
: (0,0,1,2,3,4)
This construction exists as one of 64 orthant facets of the runcicantitruncated 6-orthoplex.
= Images =
{{5-simplex Coxeter plane graphs|t0123|150}}
Related uniform 5-polytopes
These polytopes are in a set of 19 uniform 5-polytopes based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
{{Hexateron family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3o3o3x3o - spidtix, x3x3o3x3o - pattix, x3o3x3x3o - pirx, x3x3x3x3o - gippix
External links
- {{PolyCell | urlname = glossary.html#simplex| title = Glossary for hyperspace}}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions], Jonathan Bowers
- [http://www.polytope.net/hedrondude/truncates5.htm Runcinated uniform polytera] (spid), Jonathan Bowers
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}