Runcinated 7-simplexes

class=wikitable style="float:right; margin-left:8px; width:480px"
align=center

|160px
7-simplex
{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node}}

|160px
Runcinated 7-simplex
{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node}}

|160px
Biruncinated 7-simplex
{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}}

align=center

|160px
Runcitruncated 7-simplex
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node}}

|160px
Biruncitruncated 7-simplex
{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}

|160px
Runcicantellated 7-simplex
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}

align=center

|160px
Biruncicantellated 7-simplex
{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node}}

|160px
Runcicantitruncated 7-simplex
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}

|160px
Biruncicantitruncated 7-simplex
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}

colspan=3|Orthogonal projections in A7 Coxeter plane

In seven-dimensional geometry, a runcinated 7-simplex is a convex uniform 7-polytope with 3rd order truncations (runcination) of the regular 7-simplex.

There are 8 unique runcinations of the 7-simplex with permutations of truncations, and cantellations.

{{-}}

Runcinated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|Runcinated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,3{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges2100
style="background:#e7dcc3;"|Vertices280
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Small prismated octaexon (acronym: spo) (Jonathan Bowers)Klitzing, (x3o3o3x3o3o3o - spo)

= Coordinates =

The vertices of the runcinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,1,2). This construction is based on facets of the runcinated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t03|150}}

Biruncinated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|Biruncinated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges4200
style="background:#e7dcc3;"|Vertices560
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Small biprismated octaexon (sibpo) (Jonathan Bowers)Klitzing, (o3x3o3o3x3o3o - sibpo)

= Coordinates =

The vertices of the biruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t14|150}}

Runcitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|runcitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,3{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges4620
style="background:#e7dcc3;"|Vertices840
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Prismatotruncated octaexon (acronym: patto) (Jonathan Bowers)Klitzing, (x3x3o3x3o3o3o - patto)

= Coordinates =

The vertices of the runcitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,2,3). This construction is based on facets of the runcitruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t013|150}}

== Biruncitruncated 7-simplex ==

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|Biruncitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,2,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges8400
style="background:#e7dcc3;"|Vertices1680
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Biprismatotruncated octaexon (acronym: bipto) (Jonathan Bowers)Klitzing, (o3x3x3o3x3o3o - bipto)

= Coordinates =

The vertices of the biruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,3,3). This construction is based on facets of the biruncitruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t124|150}}

Runcicantellated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|runcicantellated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,2,3{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges3360
style="background:#e7dcc3;"|Vertices840
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Prismatorhombated octaexon (acronym: paro) (Jonathan Bowers)Klitzing, (x3o3x3x3o3o3o - paro)

= Coordinates =

The vertices of the runcicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,2,3). This construction is based on facets of the runcicantellated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t023|150}}

Biruncicantellated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|biruncicantellated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,3,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges
style="background:#e7dcc3;"|Vertices
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Biprismatorhombated octaexon (acronym: bipro) (Jonathan Bowers)

= Coordinates =

The vertices of the biruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,2,3,3). This construction is based on facets of the biruncicantellated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t134|150}}

Runcicantitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|runcicantitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt0,1,2,3{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges5880
style="background:#e7dcc3;"|Vertices1680
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Great prismated octaexon (acronym: gapo) (Jonathan Bowers)Klitzing, (x3x3x3x3o3o3o - gapo)

= Coordinates =

The vertices of the runcicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,3,4). This construction is based on facets of the runcicantitruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t0123|150}}

Biruncicantitruncated 7-simplex

class="wikitable" align="right" style="margin-left:10px" width="250"

! style="background:#e7dcc3;" colspan="2"|biruncicantitruncated 7-simplex

style="background:#e7dcc3;"|Typeuniform 7-polytope
style="background:#e7dcc3;"|Schläfli symbolt1,2,3,4{3,3,3,3,3,3}
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}
style="background:#e7dcc3;"|6-faces
style="background:#e7dcc3;"|5-faces
style="background:#e7dcc3;"|4-faces
style="background:#e7dcc3;"|Cells
style="background:#e7dcc3;"|Faces
style="background:#e7dcc3;"|Edges11760
style="background:#e7dcc3;"|Vertices3360
style="background:#e7dcc3;"|Vertex figure
style="background:#e7dcc3;"|Coxeter groupA7, [36], order 40320
style="background:#e7dcc3;"|Propertiesconvex

= Alternate names =

  • Great biprismated octaexon (acronym: gibpo) (Jonathan Bowers)Klitzing, (o3x3x3x3x3o3o- gibpo)

= Coordinates =

The vertices of the biruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,4). This construction is based on facets of the biruncicantitruncated 8-orthoplex.

= Images =

{{7-simplex Coxeter plane graphs|t1234|150}}

Related polytopes

These polytopes are among 71 uniform 7-polytopes with A7 symmetry.

{{Octaexon family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polyexa.htm|7D|uniform polytopes (polyexa)}} x3o3o3x3o3o3o - spo, o3x3o3o3x3o3o - sibpo, x3x3o3x3o3o3o - patto, o3x3x3o3x3o3o - bipto, x3o3x3x3o3o3o - paro, x3x3x3x3o3o3o - gapo, o3x3x3x3x3o3o- gibpo