Saccharibacteria
{{Short description|Bacterial lineage}}
{{Taxobox
|image=41396 2020 736 Fig4 HTML.webp
|image_caption=Ca. Nanosynbacter lyticus (aka TM7x, green) and bacterial hosts (red).
Scale bars are 5 μm.
|domain = Bacteria
|unranked_phylum = CPR group
| phylum = Saccharibacteria
| phylum_authority = Albertsen et al. 2013
| classis = "Saccharimonadia"
| classis_authority = corrig. McLean et al. 2020
| ordo = "Saccharimonadales"
| ordo_authority = corrig. McLean et al. 2020
| subdivision_ranks = Families
| subdivision =
- "Nanogingivalaceae"
- "Nanoperiodontomorbaceae"
- "Nanosynbacteraceae"
- "Nanosyncoccaceae"
- "Saccharimonadaceae"
|synonyms=
- Candidate division TM7
}}
Saccharibacteria, formerly known as TM7,{{cite web |author = Sayers|display-authors = etal| url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=95818&lvl=3&lin=f&keep=1&srchmode=1&unlock |title=Saccharibacteria |accessdate=2021-03-20 |publisher=National Center for Biotechnology Information (NCBI) taxonomy database}}
is a major bacterial lineage. It was discovered through 16S rRNA sequencing . {{Cite journal | doi = 10.1128/MMBR.00033-09 | last1 = Pace | first1 = N. R. | title = Mapping the Tree of Life: Progress and Prospects | journal = Microbiology and Molecular Biology Reviews | volume = 73 | issue = 4 | pages = 565–576 | year = 2009 | pmid = 19946133 | pmc = 2786576}}
TM7x from the human oral cavity was cultivated and revealed that TM7x is an extremely small coccus (200-300 nm) and has a distinctive lifestyle not previously observed in human-associated microbes.{{Cite journal|title = Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle|journal = Proceedings of the National Academy of Sciences|date = 2015-01-06|issn = 0027-8424|pmc = 4291631|pmid = 25535390|pages = 244–249|volume = 112|issue = 1|doi = 10.1073/pnas.1419038112|first1 = Xuesong|last1 = He|first2 = Jeffrey S.|last2 = McLean|first3 = Anna|last3 = Edlund|first4 = Shibu|last4 = Yooseph|first5 = Adam P.|last5 = Hall|first6 = Su-Yang|last6 = Liu|first7 = Pieter C.|last7 = Dorrestein|first8 = Eduardo|last8 = Esquenazi|first9 = Ryan C.|last9 = Hunter|bibcode = 2015PNAS..112..244H|doi-access = free}} It is an obligate epibiont of various hosts, including Actinomyces odontolyticus strain (XH001) yet also has a parasitic phase thereby killing its host. The full genome sequence revealed a highly reduced genome (705kB) {{cite web | url=https://www.ncbi.nlm.nih.gov/bioproject?term=PRJNA241438 | title=Candidatus Saccharibacteria oral taxon TM7x (ID 241438) - BioProject - NCBI}} and a complete lack of amino acid biosynthetic capacity. An axenic culture of TM7 from the oral cavity was reported in 2014 but no sequence or culture was made available.{{cite journal|last1=Soro|first1=V.|title=Axenic Culture of a Candidate Division TM7 Bacterium from the Human Oral Cavity and Biofilm Interactions with Other Oral Bacteria|journal=Applied and Environmental Microbiology|date=2014|volume=80|issue=20|pages=6480–6489|doi=10.1128/AEM.01827-14|pmid=25107981|pmc=4178647|bibcode=2014ApEnM..80.6480S}}
Along with Candidate Phylum TM6,{{Cite journal|title = Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum|journal = Proceedings of the National Academy of Sciences|date = 2013-06-25|issn = 0027-8424|pmc = 3696752|pmid = 23754396|pages = E2390–E2399|volume = 110|issue = 26|doi = 10.1073/pnas.1219809110|first1 = Jeffrey S.|last1 = McLean|first2 = Mary-Jane|last2 = Lombardo|first3 = Jonathan H.|last3 = Badger|first4 = Anna|last4 = Edlund|first5 = Mark|last5 = Novotny|first6 = Joyclyn|last6 = Yee-Greenbaum|first7 = Nikolay|last7 = Vyahhi|first8 = Adam P.|last8 = Hall|first9 = Youngik|last9 = Yang|bibcode = 2013PNAS..110E2390M|doi-access = free}} it was named after sequences obtained in 1994 in an environmental study of a soil sample of peat bog in Germany where 262 PCR amplified 16S rDNA fragments were cloned into a plasmid vector, named TM clones for {{lang|de|Torf, Mittlere Schicht}} (lit. peat, middle layer).{{Cite journal | doi = 10.1007/BF01574689| last1 = Rheims | first1 = H. | last2 = Rainey | first2 = F. A. | last3 = Stackebrandt | first3 = E. | title = A molecular approach to search for diversity among bacteria in the environment | journal = Journal of Industrial Microbiology & Biotechnology | volume = 17 | issue = 3–4 | pages = 159–169 | year = 1996| s2cid = 31868442 | doi-access = free }}
It has been found in several environments since such as from activated sludges,{{Cite journal| last1 = Bond| first1 = PL| last2 = Hugenholtz| first2 = P| last3 = Keller| first3 = J| last4 = Blackall| first4 = LL| title = Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors| journal = Applied and Environmental Microbiology| volume = 61| issue = 5| pages = 1910–6| year = 1995| doi = 10.1128/AEM.61.5.1910-1916.1995| pmid = 7544094| pmc = 167453| bibcode = 1995ApEnM..61.1910B}}{{Cite journal| last1 = Godon| first1 = JJ| last2 = Zumstein| first2 = E| last3 = Dabert| first3 = P| last4 = Habouzit| first4 = F| last5 = Moletta| first5 = R| title = Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis| journal = Applied and Environmental Microbiology| volume = 63| issue = 7| pages = 2802–13| year = 1997| doi = 10.1128/AEM.63.7.2802-2813.1997| pmid = 9212428| pmc = 168577| bibcode = 1997ApEnM..63.2802G}} water treatment plant sludge{{Cite journal| last1 = Hugenholtz | first1 = P.| last2 = Tyson | first2 = G. W.| last3 = Webb | first3 = R. I.| last4 = Wagner | first4 = A. M.| last5 = Blackall | first5 = L. L.| title = Investigation of Candidate Division TM7, a Recently Recognized Major Lineage of the Domain Bacteria with No Known Pure-Culture Representatives| journal = Applied and Environmental Microbiology| volume = 67| issue = 1| pages = 411–419| year = 2001| pmid = 11133473| pmc = 92593| doi = 10.1128/AEM.67.1.411-419.2001| bibcode = 2001ApEnM..67..411H}} rainforest soil,{{Cite journal| last1 = Borneman| first1 = J| last2 = Triplett| first2 = EW| title = Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation| journal = Applied and Environmental Microbiology| volume = 63| issue = 7| pages = 2647–53| year = 1997| doi = 10.1128/AEM.63.7.2647-2653.1997| pmid = 9212415| pmc = 168563| bibcode = 1997ApEnM..63.2647B}} human saliva,{{Cite journal| last1 = Lazarevic | first1 = V.| last2 = Whiteson | first2 = K.| last3 = Hernandez | first3 = D.| last4 = Francois | first4 = P.| last5 = Schrenzel | first5 = J.| title = Study of inter- and intra-individual variations in the salivary microbiota| journal = BMC Genomics| volume = 11| pages = 523| year = 2010| pmid = 20920195| pmc = 2997015| doi = 10.1186/1471-2164-11-523| doi-access = free}}{{Cite journal| last1 = Dewhirst | first1 = F. E.| last2 = Chen | first2 = T.| last3 = Izard | first3 = J.| last4 = Paster | first4 = B. J.| last5 = Tanner | first5 = A. C. R.| last6 = Yu | first6 = W. -H.| last7 = Lakshmanan | first7 = A.| last8 = Wade | first8 = W. G.| title = The Human Oral Microbiome| journal = Journal of Bacteriology| volume = 192| issue = 19| pages = 5002–5017| year = 2010| pmid = 20656903| pmc = 2944498| doi = 10.1128/JB.00542-10}} in association with sponges,{{Cite journal | last1 = Thiel | first1 = V. | last2 = Leininger | first2 = S. | last3 = Schmaljohann | first3 = R. | last4 = Brümmer | first4 = F. | last5 = Imhoff | first5 = J. F. | title = Sponge-specific Bacterial Associations of the Mediterranean Sponge Chondrilla nucula (Demospongiae, Tetractinomorpha) | doi = 10.1007/s00248-006-9177-y | journal = Microbial Ecology | volume = 54 | issue = 1 | pages = 101–111 | year = 2007 | pmid = 17364249 | pmc = | s2cid = 34564973 }} cockroaches,{{Cite journal| last1 = Berlanga| first1 = M| last2 = Paster| first2 = BJ| last3 = Guerrero| first3 = R| title = The taxophysiological paradox: changes in the intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the physiological state of the host| journal = International Microbiology| volume = 12| issue = 4| pages = 227–36| year = 2009| pmid = 20112227}} gold mines,{{Cite journal| last1 = Rastogi | first1 = G.| last2 = Stetler | first2 = L. D.| last3 = Peyton | first3 = B. M.| last4 = Sani | first4 = R. K.| title = Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA| journal = The Journal of Microbiology| volume = 47| issue = 4| pages = 371–384| year = 2009| pmid = 19763410| doi = 10.1007/s12275-008-0249-1| s2cid = 7972151| url = https://scholarworks.montana.edu/xmlui/handle/1/13225}} acetate-amended aquifer sediment,{{Cite journal|title = Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla|journal = mBio |date = 2013-01-01|issn = 2150-7511|pmc = 3812714|pmid = 24149512|pages = e00708–00713|volume = 4|issue = 5|doi = 10.1128/mBio.00708-13|first1 = Rose S.|last1 = Kantor|first2 = Kelly C.|last2 = Wrighton|first3 = Kim M.|last3 = Handley|first4 = Itai|last4 = Sharon|first5 = Laura A.|last5 = Hug|first6 = Cindy J.|last6 = Castelle|first7 = Brian C.|last7 = Thomas|first8 = Jillian F.|last8 = Banfield}} and other environments (bar thermophilic), making it an abundant and widespread phylum. Recently, TM7 rDNA and whole-cells were detected in activated sludge with >99.7% identity to a human skin TM7 and 98.6% identity to the human oral TM7a,{{Cite journal | last1 = Dinis | first1 = J. M. | last2 = Barton | first2 = D. E. | last3 = Ghadiri | first3 = J. | last4 = Surendar | first4 = D. | last5 = Reddy | first5 = K. | last6 = Velasquez | first6 = F. | last7 = Chaffee | first7 = C. L. | last8 = Lee | first8 = M. C. W. | last9 = Gavrilova | first9 = H. | last10 = Ozuna | first10 = H. | last11 = Smits | first11 = S. A. | last12 = Ouverney | first12 = C. C. | editor1-last = Yang | editor1-first = Ching-Hong | title = In Search of an Uncultured Human-Associated TM7 Bacterium in the Environment | doi = 10.1371/journal.pone.0021280 | journal = PLOS ONE | volume = 6 | issue = 6 | pages = e21280 | year = 2011 | pmid = 21701585 | pmc =3118805 |bibcode = 2011PLoSO...621280D | doi-access = free}} suggesting metabolically active TM7 isolates in environmental sites may serve as model organisms to investigate the role TM7 species play in human health.
Properties
TM7 specific FISH probes identified species from a bioreactor sludge revealed the presence of a gram-positive cell envelopes and several morphotypes: a sheathed filament (abundant), a rod occurring in short chains, a thick filament and cocci; the former may be the cause of Eikelboom type 0041 (bulking problems of activated sludges).
The majority of bacterial phyla are Gram-negative diderms, whereas only the Bacillota, the Actinomycetota and Chloroflexota are monoderms.
Using a polycarbonate membrane as a growth support and soil extract as the substrate, microcolonies of this clade were grown consisting of long filamentous rods up to 15 μm long with less than 50 cells or short rods with several hundred cells per colony, after 10 days incubation.{{Cite journal| last1 = Ferrari | first1 = B. C.| last2 = Binnerup | first2 = S. J.| last3 = Gillings | first3 = M.| title = Microcolony Cultivation on a Soil Substrate Membrane System Selects for Previously Uncultured Soil Bacteria| journal = Applied and Environmental Microbiology| volume = 71| issue = 12| pages = 8714–8720| year = 2005| pmid = 16332866| pmc = 1317317| doi = 10.1128/AEM.71.12.8714-8720.2005| bibcode = 2005ApEnM..71.8714F}}
Thanks to a microfluidic chip allowing the isolation and amplification of the genome of a single cell, the genome of 3 long filament morphology cells with identical 16S rRNA were sequenced to create a draft sequence of the genome confirming some previously ascertained properties, elucidating some of its metabolic capabilities, revealing novel genes and hinting to potential pathogenic abilities.{{Cite journal| last1 = Marcy | first1 = Y.| last2 = Ouverney | first2 = C.| last3 = Bik | first3 = E. M.| last4 = Losekann | first4 = T.| last5 = Ivanova | first5 = N.| last6 = Martin | first6 = H. G.| last7 = Szeto | first7 = E.| last8 = Platt | first8 = D.| last9 = Hugenholtz | first9 = P.| last10 = Relman | first10 = D. A.| last11 = Quake | first11 = S. R.| title = Inaugural Article: Dissecting biological "dark matter" with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth| journal = Proceedings of the National Academy of Sciences| volume = 104| issue = 29| pages = 11889–11894| year = 2007| doi = 10.1073/pnas.0704662104|bibcode = 2007PNAS..10411889M | pmid=17620602 | pmc=1924555| doi-access = free}}
Over 50 different phylotypes have been identified and it has a relatively modest intradivision 16S rDNA sequence divergence of 17%, which ranges from 13 to 33%. An interactive phylogenetic tree of TM7, built using jsPhyloSVG,{{Cite journal | last1 = Smits | first1 = S. A. | last2 = Ouverney | first2 = C. C. | editor1-last = Poon | editor1-first = Art F. Y. | doi = 10.1371/journal.pone.0012267 | title = JsPhyloSVG: A Javascript Library for Visualizing Interactive and Vector-Based Phylogenetic Trees on the Web | journal = PLOS ONE | volume = 5 | issue = 8 | pages = e12267 | year = 2010 | pmid = 20805892 | pmc =2923619 |bibcode = 2010PLoSO...512267S | doi-access = free }} allows for quick access to GenBank sequences and distance matrix calculations between tree branches.
Stable-isotope probing studies have found that some members of this phylum can degrade toluene.{{Cite journal| last1 = Xie | first1 = S.| last2 = Sun | first2 = W.| last3 = Luo | first3 = C.| last4 = Cupples | first4 = A. M.| title = Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing| journal = Biodegradation| volume = 22| issue = 1| pages = 71–81| year = 2010| pmid = 20549308| doi = 10.1007/s10532-010-9377-5| s2cid = 9840162}}{{Cite journal| last1 = Luo | first1 = C.| last2 = Xie | first2 = S.| last3 = Sun | first3 = W.| last4 = Li | first4 = X.| last5 = Cupples | first5 = A. M.| title = Identification of a Novel Toluene-Degrading Bacterium from the Candidate Phylum TM7, as Determined by DNA Stable Isotope Probing| journal = Applied and Environmental Microbiology| volume = 75| issue = 13| pages = 4644–4647| year = 2009| pmid = 19447956| pmc = 2704817| doi = 10.1128/AEM.00283-09| bibcode = 2009ApEnM..75.4644L}}
Taxonomy
{{cladogram|title=120 marker proteins based GTDB 09-RS220{{cite web |title=GTDB release 09-RS220 |url=https://gtdb.ecogenomic.org/about#4%7C |website=Genome Taxonomy Database|access-date=10 May 2024}}{{cite web |title=bac120_r220.sp_labels |url=https://data.gtdb.ecogenomic.org/releases/release220/220.0/auxillary_files/bac120_r220.sp_labels.tree |website=Genome Taxonomy Database|access-date=10 May 2024}}{{cite web |title=Taxon History |url=https://gtdb.ecogenomic.org/taxon_history/ |website=Genome Taxonomy Database|access-date=10 May 2024}}|
{{clade|style=font-size:90%;line-height:90%;width:350px
|label1=Saccharimonadales
|1={{Clade
|1="Ca. Chaera"
|2={{Clade
|1="Ca. Nanoperiodontomorbus"
|2={{Clade
|1={{Clade
|1="Ca. Nanogingivalis"
|2="Ca. Nanosyncoccus"
}}
|2={{Clade
|1="Ca. Microsaccharimonas"
|2={{Clade
|1= "Ca. Mycolatisynbacter"
|2={{Clade
|1="Ca. Saccharimonas"
|2="Ca. Nanosynbacter"
}}
}}
}}
}}
}}
}}
}}
}}
{{cladogram|title=Rappe & Giovannoni 2003{{Cite journal| last1 = Rappe | first1 = M. S.| last2 = Giovannoni | first2 = S. J.| title = The Uncultured Microbial Majority| journal = Annual Review of Microbiology| volume = 57| pages = 369–394| year = 2003| pmid = 14527284| doi = 10.1146/annurev.micro.57.030502.090759}}|
{{clade|style=font-size:90%;line-height:90%;width:400px
|label1=Patescibacteria
|sublabel1=(CPR)
|1={{clade
|1={{clade
|1={{clade
|label1=Parcubacteria group
|1={{clade
|2=Gracilibacteria (BD1-5 group)
}}
}}
|2={{clade
|1=Microgenomates (OP11 group)
|2=Dojkabacteria (WS6)
}}
}}
|2={{clade
|1=Saccharibacteria (TM7)
|2={{clade
|1=SC3
|2={{clade
|1=WS5
|2=Guaymas1 (Thermodesulfobacteriota-related)
}}
}}
}}
}}
}}
}}
{{cladogram|title=Dinis et al. 2011|
{{clade|style=font-size:90%;line-height:90%;width:300px
|label1=Saccharibacteria
|1={{clade
|1=Saccharibacteria I
|2={{clade
|1=Saccharibacteria II
|2={{clade
|1=Saccharibacteria IV
|2={{clade
|1=TM7a group
|2=Saccharibacteria III
}}
}}
}}
}}
}}
}}
File:Tm7 bacteria phylogenetic tree.svg
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN){{cite web | author=J.P. Euzéby | url=https://lpsn.dsmz.de/search?word=Saccharibacteria | title=Saccharibacteria | publisher=List of Prokaryotic names with Standing in Nomenclature (LPSN)| access-date=2021-06-27}} and National Center for Biotechnology Information (NCBI)
- Class "Saccharimonadia" corrig. McLean et al. 2020 ["Nanoperiodontomorbia" corrig. McLean et al. 2020; "Nanosyncoccia" corrig. McLean et al. 2020]
- Order "Saccharimonadales" McLean et al. 2020 ["Nanogingivalales" corrig. McLean et al. 2020; "Nanoperiodontomorbales" corrig. McLean et al. 2020; "Nanosynbacterales" McLean et al. 2020; "Nanosyncoccales" McLean et al. 2020]
- ?"Ca. Minimicrobia" Ibrahim et al. 2021
- "Ca. M. naudis" Ibrahim et al. 2021
- "Ca. M. vallesae" Ibrahim et al. 2021
- ?"Ca. Nanosynsaccharibacterium" corrig. McLean et al. 2020
- ?"Ca. Southlakia" Wang et al. 2023
- "Ca. S. epibionticum" Wang et al. 2023
- Family AMD01
- "Ca. Chaera" corrig. Lemos et al. 2019
- "Ca. C. renei" corrig. Lemos et al. 2019
- Family "Nanoperiodontomorbaceae" corrig. McLean et al. 2020
- "Ca. Nanoperiodontomorbus" corrig. McLean et al. 2020
- "Ca. N. periodonticus" corrig. McLean et al. 2020
- Family "Nanogingivalaceae" McLean et al. 2020
- "Ca. Nanogingivalis" McLean et al. 2020
- "Ca. N. gingivitcus" McLean et al. 2020
- Family "Nanosyncoccaceae" McLean et al. 2020
- "Ca. Nanosyncoccus" McLean et al. 2020
- ?"Ca. N. oralis" Gilroy et al. 2023
- "Ca. N. alces" McLean et al. 2020
- "Ca. N. nanoralicus" McLean et al. 2020
- Family UBA1547
- "Ca. Microsaccharimonas" corrig. Lemos et al. 2019 ["Candidatus Saccharibacter" Lemos et al. 2019 non Jojima et al. 2004] (AMD02)
- "Ca. M. sossegonensis" corrig. Lemos et al. 2019
- Family UBA10027
- "Ca. Mycolatisynbacter" corrig. Batinovic et al. 2021 ["Ca. Mycosynbacter" Batinovic et al. 2021] (JR1)
- "Ca. M. gordoniilyticus" corrig. Batinovic et al. 2021 ["Ca. Mycosynbacter amalyticus" Batinovic et al. 2021]
- Family "Saccharimonadaceae" McLean et al. 2020
- "Ca. Saccharimonas" Albertsen et al. 2013
- "Ca. S. aalborgensis" Albertsen et al. 2013
- Family "Nanosynbacteraceae" McLean et al. 2020
- "Ca. Nanosynbacter" McLean et al. 2020 (TM7x)
- ?"Ca. N. colneyensis" Gilroy et al. 2023
- ?"Ca. N. gullae" Gilroy et al. 2023
- ?"Ca. N. norwichensis" Gilroy et al. 2023
- ?"Ca. N. quadrami" Gilroy et al. 2023
- "Ca. N. featherlites" McLean et al. 2020
- "Ca. N. lyticus" McLean et al. 2020
See also
References
Fredrik Bäckhed, Ruth Ley, Justin L Sonnenburg, Daniel A. Peterson, Jeffrey I. Gordon: [https://www.researchgate.net/publication/7944773_Host-Bacterial_Mutualism_in_the_Human_Intestine Host‐Bacterial Mutualism in the Human Intestine]. In: Science 307(5717): 1915-1920. April 2005. doi:10.1126/science.1104816. {{PMID|15790844}}
Michael A. Dojka, Philip Hugenholtz, Sheridan K. Haack, Norman R. Pace: [https://pubmed.ncbi.nlm.nih.gov/9758812/ Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation]. In: ASM Appl. Environ. Microbiol. 64(10): 3869-3877. 29 October 2020. doi:10.1128/AEM.64.10.3869-3877.1998. PMID 9758812. {{PMC|PMC106571}}
Damien M. de Vienne: [http://lifemap-ncbi.univ-lyon1.fr/?tid=1794811 Parcubacteria group], NCBI Lifemap, University of Lyon. Lifemap is an interactive tool to explore NCBI taxonomy.
Damien M. de Vienne: [http://lifemap-ncbi.univ-lyon1.fr/?tid=74247 environmental samples - candidate division WS5], NCBI Lifemap, University of Lyon. Lifemap is an interactive tool to explore NCBI taxonomy.
C. L. Schoch, Sayers et al.: [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1794811&lvl=3&srchmode=3&keep=1 Parcubacteria group], [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=1794811 Parcubacteria group] (clade/superphylum, syn. candidate division OD1); {{lang|en|National Center for Biotechnology Information (NCBI)}}
C. L. Schoch, Sayers et al.: [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=74247&lvl=3&srchmode=3&keep=1 candidate division WS5], [https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=74247 candidate division WS5] (clade, syn. candidate division Wurtsmith 5); {{lang|en|National Center for Biotechnology Information (NCBI)}}
External links
- [https://scitechdaily.com/ultra-small-parasitic-bacteria-found-in-groundwater-dogs-cats-and-you/ Ultra-Small, Parasitic Bacteria Found in Groundwater, Dogs, Cats — And You]; on: SciTechDaily; July 21, 2020; source: Forsyth Institute
- Jeffrey S. McLean, Batbileg Bor, Kristopher A. Kerns, Kelly Wrighton, Wenyuan Shi, Xuesong He, et al.: [https://doi.org/10.1016/j.celrep.2020.107939 Acquisition and Adaptation of Ultra-small Parasitic Reduced Genome Bacteria to Mammalian Hosts]; in: CellRep 32, 107939; July 21, 2020; doi:10.1016/j.celrep.2020.107939
- Jeffrey S. McLean, Batbileg Bor, Thao T. To, Quanhui Liu, Kristopher A. Kerns, Lindsey Solden, Kelly Wrighton, Xuesong He, Wenyuan Shi: [https://www.biorxiv.org/content/10.1101/258137v1 Evidence of independent acquisition and adaption of ultra-small bacteria to human hosts across the highly diverse yet reduced genomes of the phylum Saccharibacteria]; on: bioRxiv; February 02, 2018; doi:10.1101/258137 (PrePrint)
{{Bacteria classification|state=collapsed}}
{{Taxonbar|from=Q5031741}}