Thermodesulfobacteriota
{{short description|Phylum of Gram-negative bacteria}}
{{Automatic taxobox
| image = Dvulgaris micrograph.JPG
| image_caption = Nitratidesulfovibrio vulgaris
| taxon = Thermodesulfobacteriota
| authority = Garrity & Holt 2021{{cite journal | vauthors = Oren A, Garrity GM | title = Valid publication of the names of forty-two phyla of prokaryotes | journal = Int J Syst Evol Microbiol | year = 2021 | volume = 71 | issue = 10 | pages = 5056 | doi = 10.1099/ijsem.0.005056 | pmid = 34694987 | doi-access = free }}
| subdivision =
- "Ca. Anaeroferrophillalia" Murphy et al. 2021
- "Ca. Anaeropigmentia" Murphy et al. 2021
- "Ca. Dadabacteria"{{cite journal | vauthors = Gavriilidou et al. | title = Candidatus Nemesobacterales is a sponge-specific clade of the candidate phylum Desulfobacterota adapted to a symbiotic lifestyle | journal = The ISME Journal | year = 2023 | volume = 17 | issue = 11 | pages = 1808–1818 | doi = 10.1038/s41396-023-01484-z | doi-access = free | pmid = 37587369 | pmc = 10579324 }}
- Deferrisomatia Waite et al. 2020
- Desulfarculia Waite et al. 2020
- Desulfobaccia Waite et al. 2020
- Desulfobacteria Waite et al. 2020
- Desulfobulbia Waite et al. 2020
- "Ca. Desulfofervidia" Waite et al. 2020
- Desulfomonilia Waite et al. 2020
- Desulfovibrionia Waite et al. 2020
- Desulfuromonadia Waite et al. 2020
- Dissulfuribacteria Waite et al. 2020
- Syntrophia Waite et al. 2020
- Syntrophobacteria Waite et al. 2020
- Syntrophorhabdia Waite et al. 2020
- Thermodesulfobacteria Hatchikian et al. 2002
- "Ca. Zymogenia" Murphy et al. 2021
| synonyms = * Desulfobacterota Waite et al. 2020
- "Ca. Dadabacteria" Hug et al. 2016
- "Thermodesulfobacteraeota" Oren et al. 2015
- Thermodesulfobacteria Garrity and Holt 2002
}}
The Thermodesulfobacteriota, or Desulfobacterota,{{Cite journal |last1=Waite |first1=David W |last2=Chuvochina |first2=Maria |last3=Pelikan |first3=Claus |last4=Parks |first4=Donovan H |last5=Yilmaz |first5=Pelin |last6=Wagner |first6=Michael |last7=Loy |first7=Alexander |last8=Naganuma |first8=Takeshi |last9=Nakai |first9=Ryosuke |last10=Whitman |first10=William B |last11=Hahn |first11=Martin W |last12=Kuever |first12=Jan |last13=Hugenholtz |first13=Philip |date=2020-11-01 |title=Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities |journal=International Journal of Systematic and Evolutionary Microbiology |language=en |volume=70 |issue=11 |pages=5972–6016 |doi=10.1099/ijsem.0.004213 |issn=1466-5026|doi-access=free |pmid=33151140 }} are a phylum of anaerobic Gram-negative bacteria. Many representatives are sulfate-reducing bacteria,{{Cite journal |last1=Müller |first1=Albert Leopold |last2=Kjeldsen |first2=Kasper Urup |last3=Rattei |first3=Thomas |last4=Pester |first4=Michael |last5=Loy |first5=Alexander |date=2015-05-01 |title=Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases |journal=The ISME Journal |language=en |volume=9 |issue=5 |pages=1152–1165 |doi=10.1038/ismej.2014.208 |issn=1751-7362 |pmc=4351914 |pmid=25343514}} others can grow by disproportionation of various sulphur species,{{Cite journal |last1=Slobodkin |first1=A. I. |last2=Slobodkina |first2=G. B. |date=2019 |title=Diversity of Sulfur-Disproportionating Microorganisms |url=http://link.springer.com/10.1134/S0026261719050138 |journal=Microbiology |language=en |volume=88 |issue=5 |pages=509–522 |doi=10.1134/S0026261719050138 |issn=0026-2617}} reduction or iron,{{Cite journal |last1=Slobodkina |first1=G. B. |last2=Reysenbach |first2=A.-L. |last3=Panteleeva |first3=A. N. |last4=Kostrikina |first4=N. A. |last5=Wagner |first5=I. D. |last6=Bonch-Osmolovskaya |first6=E. A. |last7=Slobodkin |first7=A. I. |date=2012-10-01 |title=Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria |url=https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.038372-0 |journal=International Journal of Systematic and Evolutionary Microbiology |language=en |volume=62 |issue=Pt_10 |pages=2463–2468 |doi=10.1099/ijs.0.038372-0 |pmid=22140176 |issn=1466-5026}} or even use external surfaces as electron acceptors (exoelectrogens).{{Cite journal |last1=Bond |first1=Daniel R. |last2=Holmes |first2=Dawn E. |last3=Tender |first3=Leonard M. |last4=Lovley |first4=Derek R. |date=2002-01-18 |title=Electrode-Reducing Microorganisms That Harvest Energy from Marine Sediments |url=https://www.science.org/doi/10.1126/science.1066771 |journal=Science |language=en |volume=295 |issue=5554 |pages=483–485 |doi=10.1126/science.1066771 |pmid=11799240 |issn=0036-8075}} They have highly variable morphology: vibrio, rods, cocci, as well as filamentous cable bacteria.{{Cite journal |last1=Pfeffer |first1=Christian |last2=Larsen |first2=Steffen |last3=Song |first3=Jie |last4=Dong |first4=Mingdong |last5=Besenbacher |first5=Flemming |last6=Meyer |first6=Rikke Louise |last7=Kjeldsen |first7=Kasper Urup |last8=Schreiber |first8=Lars |last9=Gorby |first9=Yuri A. |last10=El-Naggar |first10=Mohamed Y. |last11=Leung |first11=Kar Man |last12=Schramm |first12=Andreas |last13=Risgaard-Petersen |first13=Nils |last14=Nielsen |first14=Lars Peter |date=2012 |title=Filamentous bacteria transport electrons over centimetre distances |url=https://www.nature.com/articles/nature11586 |journal=Nature |language=en |volume=491 |issue=7423 |pages=218–221 |doi=10.1038/nature11586 |pmid=23103872 |issn=0028-0836}} Individual members of Desulfobacterota are also studied for their bacterial nanowires or syntrophic relationships.File:MBE TOL.jpg of prokaryotes based on ribosomal proteins and RNA polymerase{{Cite journal |last1=Martinez-Gutierrez |first1=Carolina A |last2=Aylward |first2=Frank O |date=2021-12-09 |editor-last=Battistuzzi |editor-first=Fabia Ursula |title=Phylogenetic Signal, Congruence, and Uncertainty across Bacteria and Archaea |url=https://academic.oup.com/mbe/article/38/12/5514/6358142 |journal=Molecular Biology and Evolution |language=en |volume=38 |issue=12 |pages=5514–5527 |doi=10.1093/molbev/msab254 |issn=1537-1719 |pmc=8662615 |pmid=34436605}} Desulfobacterota are closely related to Pseudomonadota/Proteobacteria, Myxococcota, and Bdellovibrionota.|226x226px]]
Taxonomy
The bacterial phylum Desulfobacterota has been created by merging: 1) the well-established class Thermodesulfobacteria, 2) the proposed phylum Dadabacteria, and 3) various taxa separated from the abandoned non-monophyletic class "Deltaproteobacteria" alongside three other phyla: Myxococcota, Bdellovibrionota, and SAR324.
Environment
In contrast to their close relatives, the aerobic phyla Myxococcota and Bdellovibrionota, Desulfobacterota are predominantly anaerobic. They likely retained their anaerobic lifestyle since before the Great Oxidation Event.{{Citation |last1=Davín |first1=Adrián A. |title=An evolutionary timescale for Bacteria calibrated using the Great Oxidation Event |date=2023-08-11 |url=http://biorxiv.org/lookup/doi/10.1101/2023.08.08.552427 |access-date=2025-03-27 |language=en |doi=10.1101/2023.08.08.552427 |last2=Woodcroft |first2=Ben J. |last3=Soo |first3=Rochelle M. |last4=Morel |first4=Benoit |last5=Murali |first5=Ranjani |last6=Schrempf |first6=Dominik |last7=Clark |first7=James |last8=Boussau |first8=Bastien |last9=Moody |first9=Edmund R. R.}}
Three closely related classes within Desulfobacterota: Thermodesulfobacteria, Dissulfuribacteria, and Desulfofervidia,{{Cite journal |last1=Krukenberg |first1=Viola |last2=Harding |first2=Katie |last3=Richter |first3=Michael |last4=Glöckner |first4=Frank Oliver |last5=Gruber-Vodicka |first5=Harald R. |last6=Adam |first6=Birgit |last7=Berg |first7=Jasmine S. |last8=Knittel |first8=Katrin |last9=Tegetmeyer |first9=Halina E. |last10=Boetius |first10=Antje |last11=Wegener |first11=Gunter |date=2016 |title=Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane |journal=Environmental Microbiology |language=en |volume=18 |issue=9 |pages=3073–3091 |doi=10.1111/1462-2920.13283 |issn=1462-2912|doi-access=free |pmid=26971539 }} as well as the more distant Deferrisomatia, are exclusively thermophilic, while most members of other classes are mesophiles or even psychrophiles.{{Cite journal |last1=Knoblauch |first1=Christian |last2=Sahm |first2=Kerstin |last3=Jørgensen |first3=Bo B. |date=1999-10-01 |title=Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. |url=https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-49-4-1631 |journal=International Journal of Systematic and Evolutionary Microbiology |language=en |volume=49 |issue=4 |pages=1631–1643 |doi=10.1099/00207713-49-4-1631 |pmid=10555345 |issn=1466-5026}}{{Cite journal |last1=Isaksen |first1=M. F. |last2=Teske |first2=Andreas |date=1996-09-13 |title=Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary |url=http://link.springer.com/10.1007/s002030050371 |journal=Archives of Microbiology |volume=166 |issue=3 |pages=160–168 |doi=10.1007/s002030050371 |issn=0302-8933}}
Metabolism
Sulfate-reducing bacteria (SRB) utilize sulfate as a terminal electron acceptor in a respiratory-type metabolism, coupled to the oxidation of organic compounds or hydrogen. By reducing sulfate, many Desulfobacterota species substantially contribute to the sulfur cycle.
File:Dissimilatory sulfate reduction.svg
Microbial sulfur disproportionation (MSD) is a poorly known type of energy metabolism analogous to organic fermentation, where a single inorganic sulfur species of intermediate oxidation state is simultaneously oxidized and reduced, resulting in production of sulfide and sulfate. In Desulfobacterota, MSD is often present in species that also perform sulfate reduction.
Fe(III) minerals can be microbially reduced by Fe-reducing bacteria (FeRB) using a wide range of organic compounds or H2 as electron donors. FeRB are widespread across Bacteria. Among Desulfobacterota, they are represented e.g. by the genus Geobacter (Desulfuromonadia).{{Cite journal |last1=Luef |first1=Birgit |last2=Fakra |first2=Sirine C |last3=Csencsits |first3=Roseann |last4=Wrighton |first4=Kelly C |last5=Williams |first5=Kenneth H |last6=Wilkins |first6=Michael J |last7=Downing |first7=Kenneth H |last8=Long |first8=Philip E |last9=Comolli |first9=Luis R |last10=Banfield |first10=Jillian F |date=2013-02-01 |title=Iron-reducing bacteria accumulate ferric oxyhydroxide nanoparticle aggregates that may support planktonic growth |journal=The ISME Journal |language=en |volume=7 |issue=2 |pages=338–350 |doi=10.1038/ismej.2012.103 |issn=1751-7362 |pmc=3554402 |pmid=23038172}}
Certain species of the families Geobacteraceae and Desulfuromonadaceae (Desulfuromonadia) are able to use external surfaces as electron acceptors to complete respiration.{{Cite journal |last1=Holmes |first1=Dawn E. |last2=Nicoll |first2=Julie S. |last3=Bond |first3=Daniel R. |last4=Lovley |first4=Derek R. |date=2004 |title=Potential Role of a Novel Psychrotolerant Member of the Family Geobacteraceae , Geopsychrobacter electrodiphilus gen. nov., sp. nov., in Electricity Production by a Marine Sediment Fuel Cell |journal=Applied and Environmental Microbiology |language=en |volume=70 |issue=10 |pages=6023–6030 |doi=10.1128/AEM.70.10.6023-6030.2004 |issn=0099-2240 |pmc=522133 |pmid=15466546}}{{Cite journal |last1=Reguera |first1=Gemma |last2=McCarthy |first2=Kevin D. |last3=Mehta |first3=Teena |last4=Nicoll |first4=Julie S. |last5=Tuominen |first5=Mark T. |last6=Lovley |first6=Derek R. |date=2005 |title=Extracellular electron transfer via microbial nanowires |url=https://www.nature.com/articles/nature03661 |journal=Nature |language=en |volume=435 |issue=7045 |pages=1098–1101 |doi=10.1038/nature03661 |pmid=15973408 |issn=0028-0836}} Species of the genus Geobacter use bacterial nanowires to transfer electrons to extracellular electron acceptors such as Fe(III) oxides.{{Cite journal |last1=Reguera |first1=Gemma |last2=McCarthy |first2=Kevin D. |last3=Mehta |first3=Teena |last4=Nicoll |first4=Julie S. |last5=Tuominen |first5=Mark T. |last6=Lovley |first6=Derek R. |date=2005 |title=Extracellular electron transfer via microbial nanowires |url=https://www.nature.com/articles/nature03661 |journal=Nature |language=en |volume=435 |issue=7045 |pages=1098–1101 |doi=10.1038/nature03661 |pmid=15973408 |issn=0028-0836}}
File:Geobacter Sulfurreducens Pathway.jpg to move electrons to outer membrane of Geobacter Sulfurreducens]]
Certain species of the class Syntrophia use simple organic molecules as electron donors and grow only in the presence of H2/formate-utilizing partners (methanogens or Desulfovibrio) in syntrophic associations.{{Citation |last=Kuever |first=Jan |title=The Family Syntrophaceae |date=2014 |work=The Prokaryotes |pages=281–288 |editor-last=Rosenberg |editor-first=Eugene |url=http://link.springer.com/10.1007/978-3-642-39044-9_269 |access-date=2025-03-27 |place=Berlin, Heidelberg |publisher=Springer Berlin Heidelberg |language=en |doi=10.1007/978-3-642-39044-9_269 |isbn=978-3-642-39043-2 |editor2-last=DeLong |editor2-first=Edward F. |editor3-last=Lory |editor3-first=Stephen |editor4-last=Stackebrandt |editor4-first=Erko}}
The family Desulfobulbaceae contains two genera of cable bacteria: Ca. Electronema and Ca. Electrothrix. These filamentous bacteria conduct electricity across distances over 1 cm, which allows them to connect distant sources of electron donors and electron acceptors.
File:Cable bacteria in sediment.png|Cable bacteria in between two layers of sediment
File:Cable diagram.svg|Diagram demonstrating cable bacteria metabolism in surface sediment
File:Model representation of a cable bacteria cell.jpg|Model representation of a cable bacteria cell
Notable species
- Desulfobulbus propionicus (Desulfobulbia), described in 1982 from mud samples in Germany, can serve as a biocatalyst in microbial electrosynthesis, i.e. the usage of electrons by microorganism to reduce carbon dioxide to organic molecules.{{Cite journal |last1=Gong |first1=Yanming |last2=Ebrahim |first2=Ali |last3=Feist |first3=Adam M. |last4=Embree |first4=Mallory |last5=Zhang |first5=Tian |last6=Lovley |first6=Derek |last7=Zengler |first7=Karsten |date=2013-01-02 |title=Sulfide-Driven Microbial Electrosynthesis |url=https://pubs.acs.org/doi/10.1021/es303837j |journal=Environmental Science & Technology |language=en |volume=47 |issue=1 |pages=568–573 |doi=10.1021/es303837j |pmid=23252645 |issn=0013-936X}}
- Lawsonia intracellularis (Desulfovibrionia), described in 1995 from the intestines of pigs with proliferative enteropathy disease, is a highly pathogenic intracellular parasite.{{Cite journal |last1=McORIST |first1=S. |last2=Gebhart |first2=C. J. |last3=Boid |first3=R. |last4=Barns |first4=S. M. |date=1995-10-01 |title=Characterization of Lawsonia intracellularis gen. nov., sp. nov., the Obligately Intracellular Bacterium of Porcine Proliferative Enteropathy |url=https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-45-4-820 |journal=International Journal of Systematic Bacteriology |language=en |volume=45 |issue=4 |pages=820–825 |doi=10.1099/00207713-45-4-820 |pmid=7547305 |issn=0020-7713}}{{Cite journal |last1=Gebhart |first1=C. J. |last2=Barns |first2=S. M. |last3=Mcorist |first3=S. |last4=Lin |first4=G.-F. |last5=Lawson |first5=G. H. K. |date=1993-07-01 |title=Ileal Symbiont Intracellularis, an Obligate Intracellular Bacterium of Porcine Intestines Showing a Relationship to Desulfovibrio Species |url=https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-43-3-533 |journal=International Journal of Systematic Bacteriology |language=en |volume=43 |issue=3 |pages=533–538 |doi=10.1099/00207713-43-3-533 |pmid=8347512 |issn=0020-7713}}
- Oleidesulfovibrio alaskensis (Desulfovibrionia), described in 2004 from an oil well in Alaska, corrodes metals and reduces toxic radionuclides and metals such as uranium and chromium to less soluble and less toxic forms.{{Cite journal |last=Feio |first=M. J. |date=2004-09-01 |title=Desulfovibrio alaskensis sp. nov., a sulphate-reducing bacterium from a soured oil reservoir |url=https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.63118-0 |journal=International Journal of Systematic and Evolutionary Microbiology |language=en |volume=54 |issue=5 |pages=1747–1752 |doi=10.1099/ijs.0.63118-0 |pmid=15388739 |issn=1466-5026|hdl=21.11116/0000-0001-D111-F |hdl-access=free }}{{Cite journal |last1=Hauser |first1=Loren J. |last2=Land |first2=Miriam L. |last3=Brown |first3=Steven D. |last4=Larimer |first4=Frank |last5=Keller |first5=Kimberly L. |last6=Rapp-Giles |first6=Barbara J. |last7=Price |first7=Morgan N. |last8=Lin |first8=Monica |last9=Bruce |first9=David C. |last10=Detter |first10=John C. |last11=Tapia |first11=Roxanne |last12=Han |first12=Cliff S. |last13=Goodwin |first13=Lynne A. |last14=Cheng |first14=Jan-Fang |last15=Pitluck |first15=Samuel |date=2011-08-15 |title=Complete Genome Sequence and Updated Annotation of Desulfovibrio alaskensis G20 |journal=Journal of Bacteriology |language=en |volume=193 |issue=16 |pages=4268–4269 |doi=10.1128/JB.05400-11 |issn=0021-9193 |pmc=3147700 |pmid=21685289}}
- Syntrophorhabdus aromaticivorans (Syntrophorhabdia), described in 2008 from industrial wastewater, is the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen.{{Cite journal |last1=Qiu |first1=Yan-Ling |last2=Hanada |first2=Satoshi |last3=Ohashi |first3=Akiyoshi |last4=Harada |first4=Hideki |last5=Kamagata |first5=Yoichi |last6=Sekiguchi |first6=Yuji |date=2008 |title=Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the First Cultured Anaerobe Capable of Degrading Phenol to Acetate in Obligate Syntrophic Associations with a Hydrogenotrophic Methanogen |journal=Applied and Environmental Microbiology |language=en |volume=74 |issue=7 |pages=2051–2058 |doi=10.1128/AEM.02378-07 |issn=0099-2240 |pmc=2292594 |pmid=18281436}}
- Dissulfuribacter thermophilus (Dissulfuribacteria), described in 2013 from a deep-sea hydrothermal vent, does not reduce sulfate and instead disproportionates elemental sulfur and other intermediate sulfur species.{{Cite journal |last1=Slobodkin |first1=A. I. |last2=Reysenbach |first2=A.-L. |last3=Slobodkina |first3=G. B. |last4=Kolganova |first4=T. V. |last5=Kostrikina |first5=N. A. |last6=Bonch-Osmolovskaya |first6=E. A. |date=2013-06-01 |title=Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent |url=https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijs.0.046938-0 |journal=International Journal of Systematic and Evolutionary Microbiology |language=en |volume=63 |issue=Pt_6 |pages=1967–1971 |doi=10.1099/ijs.0.046938-0 |pmid=23024145 |issn=1466-5026}}
- Ca. Desulfofervidus auxilii (Ca. Desulfofervidia), described in 2016 from Guaymas Basin sediments, is involved in the anaerobic oxidation of methane (AOM) together with archaeal syntrophic partners.
Microscopy
File:Thermodesulfobacterium hveragerdense JSP.jpg|Thermodesulfobacterium hveragerdense
File:Dvulgaris micrograph.JPG|Nitratidesulfovibrio vulgaris
File:Caldimicrobium rimae.jpg|Caldimicrobium rimae
File:Thermodesulfobacterium hydrogeniphilum.jpg|Thermodesulfobacterium hydrogeniphilum
File:Cell morphology of Dissulfuribacter thermophilus strain S69.gif|Dissulfuribacter thermophilus
File:Thermodesulfatator indicus CIR 29812.jpg|Thermodesulfatator indicus
File:Thermosulfurimonas dismutans.jpg|Thermosulfurimonas dismutans
File:Thermodesulfobacterium commune.jpg|Thermodesulfobacterium commune
File:Thermodesulfatator atlanticus.jpg|Thermodesulfatator atlanticus
File:Thermosulfuriphilus ammonigenes.jpg|Thermosulfuriphilus ammonigenes
File:Desulfovibrio alaskensis cells on stainless steel 304.jpg|Oleidesulfovibrio alaskensis
File:Electronema candidate specie.jpg|Ca. Electronema sp.
File:Mouse gut-derived taurine-respiring strain LT0009 that represents Taurinivorans muris.jpg|Taurinivorans muris
File:41467 2023 41008 Fig1c-FISH.jpg|Taurinivorans muris
File:Proposal of catalyzing bio-voltage memristors.webp|Geobacter sulfurreducens and its bacterial nanowires{{Cite journal |last1=Fu |first1=Tianda |last2=Liu |first2=Xiaomeng |last3=Gao |first3=Hongyan |last4=Ward |first4=Joy E. |last5=Liu |first5=Xiaorong |last6=Yin |first6=Bing |last7=Wang |first7=Zhongrui |last8=Zhuo |first8=Ye |last9=Walker |first9=David J. F. |last10=Joshua Yang |first10=J. |last11=Chen |first11=Jianhan |last12=Lovley |first12=Derek R. |last13=Yao |first13=Jun |date=2020-04-20 |title=Bioinspired bio-voltage memristors |journal=Nature Communications |language=en |volume=11 |issue=1 |page=1861 |doi=10.1038/s41467-020-15759-y |issn=2041-1723 |pmc=7171104 |pmid=32313096}}
File:Geobacter sulfurreducens.TIF|Geobacter sulfurreducens
Phylogeny
{{see also|Bacterial taxonomy}}
The phylogeny is based on phylogenomic analysis:
class="wikitable" |
colspan=1 |
! colspan=1 | 120 marker proteins based GTDB 09-RS220{{cite web |title=GTDB release 09-RS220 |url=https://gtdb.ecogenomic.org/about#4%7C |website=Genome Taxonomy Database |access-date=10 May 2024}}{{cite web |title=bac120_r220.sp_labels |url=https://data.gtdb.ecogenomic.org/releases/release220/220.0/auxillary_files/bac120_r220.sp_labels.tree |website=Genome Taxonomy Database |access-date=10 May 2024}}{{cite web |title=Taxon History |url=https://gtdb.ecogenomic.org/taxon_history/ |website=Genome Taxonomy Database |access-date=10 May 2024}} |
---|
style="vertical-align:top|
{{Clade | style=font-size:90%;line-height:80% |label1=Thermodesulfo |sublabel1=-bacteriota |1={{clade |1={{clade |1={{clade |label1=Deferrisomatia }} |2={{clade |1="Dadaibacteria" |2={{clade |label1=Desulfuromonadia |1={{clade }} }} }} }} |2={{clade |1={{clade |1={{clade |label1=Desulfomonilia |1=Desulfomonilales }} |2={{clade |label1=Syntrophia |1=Syntrophales |label2=Syntrophorhabdia |2=Syntrophorhabdales }} }} |2={{clade |1={{clade |1={{clade |1={{clade |label1=Dissulfuribacteria |1=Dissulfuribacterales |label2="Thermodesulfobacteriia" }} |2={{clade |label1=Desulfobulbia |1=Desulfobulbales }} }} |2={{clade |label1="Desulfofervidia" |1="Desulfofervidales" |label2=Desulfovibrionia }} }} |2={{clade |1={{clade |1={{clade |label1=Syntrophobacteria }} |2={{clade |label1=Desulfobaccia |1=Desulfobaccales |label2=Desulfarculia |2={{clade |1="Adiutricales" |2=Desulfarculales }} }} }} |2={{clade |label1=Desulfobacteria |1={{clade }} }} }} }} }} }} }} 16S rRNA based LTP_10_2024{{cite web |title=The LTP |url=https://imedea.uib-csic.es/mmg/ltp/#LTP| access-date=10 December 2024}}{{cite web |title=LTP_all tree in newick format |url=https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_all_10_2024.ntree |access-date=10 December 2024}}{{cite web |title=LTP_10_2024 Release Notes |url=https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_10_2024_release_notes.pdf |access-date=10 December 2024}} {{Clade | style=font-size:90%;line-height:80% |label1=Desulfobacterota G |1={{clade |label1=Syntrophorhabdia |1=Syntrophorhabdales }} }} {{Clade | style=font-size:90%;line-height:80% |1={{clade |label1="Desulfuromonadota" |1={{clade |label1=Desulfuromonadia |1={{clade }} }} }} }} {{Clade | style=font-size:90%;line-height:80% |1={{clade |label1=Desulfobacterota_A |1={{clade |label1=Desulfovibrionia }} }} }} {{Clade | style=font-size:90%;line-height:80% |1={{clade |label1="Desulfatiglandia" |1=Desulfatiglandales }} }} {{Clade | style=font-size:90%;line-height:80% |1={{clade |label1=Desulfomonilia |label2=Syntrophia |2=Syntrophales }} }} {{Clade | style=font-size:90%;line-height:80% |1={{clade |label1=Desulfobacterota |1={{clade |label1=Desulfobacteria }} }} }} {{Clade | style=font-size:90%;line-height:80% |1={{clade |label1=Thermodesulfobacteriota |1={{clade |label1="Thermodesulfobacteriia" }} }} }} {{Clade | style=font-size:90%;line-height:80% |1={{clade |1={{clade |label1=Desulfobaccia |1=Desulfobaccales |label2=Dissulfuribacteria |2=Dissulfuribacterales }} |2={{clade |1={{clade |label1=Desulfarculia |1=Desulfarculales |label2=Syntrophobacteria }} |2={{clade |label1=Desulfobulbia |1=Desulfobulbales }} }} }} }} {{Clade | style=font-size:90%;line-height:80% |1={{clade |label1="Deferrisomatota" |1={{clade |label1=Deferrisomatia }} }} }} | {{clade|style=font-size:90%;line-height:80% |1={{clade |label1="Binatota" |sublabel1=(Desulfobacterota B) |1={{clade |label1="Binatia" |1="Binatales" }} |label2="Deferrisomatota" |sublabel2=(Desulfobacterota C) |2={{clade |label1=Deferrisomatia }} }} }} {{clade|style=font-size:90%;line-height:80% |1={{clade |label1="Deferrimicrobiota" |sublabel1=(Desulfobacterota E) |1={{clade |label1="Deferrimicrobiia" |1="Deferrimicrobiales" }} |label2=Thermodesulfo |sublabel2=-bacteriota |2={{clade |1={{clade |label1="Zymogenia" |1="Zymogenales" |label2="Anaeroferrophilia" |2="Anaeroferrophilales" }} |2={{clade |1={{clade |label1=Desulfuromonadia |1={{clade }} }} |2={{clade |1={{clade |label1=Desulfomonilia |label2=Syntrophia |2=Syntrophales }} |2={{clade |1={{clade |1={{clade |1={{clade |label1=Dissulfuribacteria |1=Dissulfuribacterales |label2="Thermodesulfobacteriia" }} |2={{clade |label1=Desulfobulbia |1=Desulfobulbales }} }} |2={{clade |label1=Desulfovibrionia }} }} |2={{clade |1={{clade |label1="Desulfofervidia" |1="Desulfofervidales" |label2="Desulfatiglandia" |2=Desulfatiglandales }} |2={{clade |1={{clade |1={{clade |label1=Desulfobaccia |1=Desulfobaccales |label2=Desulfarculia |2={{clade |1="Adiutricales" |2=Desulfarculales }} }} |2={{clade |label1=Syntrophobacteria }} }} |2={{clade |label1=Desulfobacteria }} }} }} }} }} }} }} }} }} {{clade|style=font-size:90%;line-height:80% |1={{clade |1={{clade |label1=Desulfobacterota G |1={{clade |label1=Syntrophorhabdia |1=Syntrophorhabdales }} }} |2={{clade |label1="Dadaibacteriota" |sublabel1=(Desulfobacterota D) |1={{clade |label1="Dadabacteria" |1="Nemesobacterales" }} |label2="Acidulodesulfobacteriota" |2={{clade |label1="Acidulodesulfobacteriia" |1="Acidulidesulfobacterales" }} }} }} }} |
See also
Reference
{{Reflist|2}}{{Bacteria classification}}
{{Life on Earth}}
{{Taxonbar|from=Q20643853}}