Schmidt number#Stirling engines

{{short description|Ratio of a fluid's kinematic viscosity to mass diffusivity}}

{{for|the measure of the quantum entanglement of a density matrix|Schmidt decomposition}}

In fluid dynamics, the Schmidt number (denoted {{math|Sc}}) of a fluid is a dimensionless number defined as the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after German engineer Ernst Heinrich Wilhelm Schmidt (1892–1975).

The Schmidt number is the ratio of the shear component for diffusivity (viscosity divided by density) to the diffusivity for mass transfer {{mvar|D}}. It physically relates the relative thickness of the hydrodynamic layer and mass-transfer boundary layer.{{Cite web|last=tec-science|date=2020-05-10|title=Schmidt number|url=https://www.tec-science.com/mechanics/gases-and-liquids/schmidt-number/|access-date=2020-06-25|website=tec-science|language=en-US}}

It is defined{{Citation

| last1 = Incropera | first1 = Frank P.

| last2 = DeWitt | first2 = David P.

| title = Fundamentals of Heat and Mass Transfer

| edition = 3rd

| publisher = John Wiley & Sons

| year = 1990

| pages = 345

| isbn = 978-0-471-51729-0 }} Eq. 6.71. as:

:\mathrm{Sc} = \frac{\nu}{D} = \frac {\mu} {\rho D} = \frac{ \mbox{viscous diffusion rate} }{ \mbox{molecular (mass) diffusion rate} } = \frac{\mathrm{Pe}}{\mathrm{Re}}

where (in SI units):

The heat transfer analog of the Schmidt number is the Prandtl number ({{math|Pr}}). The ratio of thermal diffusivity to mass diffusivity is the Lewis number ({{math|Le}}).

Turbulent Schmidt Number

The turbulent Schmidt number is commonly used in turbulence research and is defined as:{{cite journal|last=Brethouwer|first=G.|title=The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation|journal=J. Fluid Mech.|year=2005|volume=542|pages=305–342|doi=10.1017/s0022112005006427|doi-broken-date=2024-11-21 |bibcode = 2005JFM...542..305B |s2cid=120121519 |url=https://zenodo.org/record/898069}}

:\mathrm{Sc}_\mathrm{t} = \frac{\nu_\mathrm{t}}{K}

where:

The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar). It is related to the turbulent Prandtl number, which is concerned with turbulent heat transfer rather than turbulent mass transfer. It is useful for solving the mass transfer problem of turbulent boundary layer flows. The simplest model for Sct is the Reynolds analogy, which yields a turbulent Schmidt number of 1. From experimental data and CFD simulations, Sct ranges from 0.2 to 6.

Stirling engines

For Stirling engines, the Schmidt number is related to the specific power.

Gustav Schmidt of the German Polytechnic Institute of Prague published an analysis in 1871 for the now-famous closed-form solution for an idealized isothermal Stirling engine model.[http://www.ent.ohiou.edu/~urieli/stirling/isothermal/Schmidt.html Schmidt Analysis (updated 12/05/07)] {{webarchive|url=https://web.archive.org/web/20080518073519/http://www.ent.ohiou.edu/~urieli/stirling/isothermal/Schmidt.html |date=2008-05-18 }}{{Cite web |url=http://mac6.ma.psu.edu/stirling/simulations/isothermal/schmidt.html |title=Archived copy |access-date=2008-04-29 |archive-date=2009-04-26 |archive-url=https://web.archive.org/web/20090426000947/http://mac6.ma.psu.edu/stirling/simulations/isothermal/schmidt.html |url-status=dead }}

: \mathrm{Sc} = \frac{\sum {\left | {Q} \right |}}{\bar p V_{sw}}

where:

  • \mathrm{Sc} is the Schmidt number
  • Q is the heat transferred into the working fluid
  • \bar p is the mean pressure of the working fluid
  • V_{sw} is the volume swept by the piston.

References

{{Reflist|colwidth=35em|refs=

{{Cite journal

|title=A CFD Study with Analytical and Experimental Validation of Laminar and Turbulent Mass-Transfer in Electrochemical Reactors

|first1=A. N. |last1=Colli

|first2=J. M. |last2=Bisang

|journal=Journal of the Electrochemical Society

|volume=165 |issue=2

|pages=E81–E88

|date=January 2018

|doi=10.1149/2.0971802jes |hdl=11336/90612

|hdl-access=free

}}

{{Cite journal

|title=Time-dependent mass-transfer behaviour under laminar and turbulent flow conditions in rotating electrodes: A CFD study with analytical and experimental validation

|first1=A. N. |last1=Colli

|first2=J. M. |last2=Bisang

|journal=International Journal of Heat and Mass Transfer

|volume=137

|pages=835–846

|date=July 2019

|doi=10.1016/j.ijheatmasstransfer.2019.03.152 |bibcode=2019IJHMT.137..835C |s2cid=132955462 }}

{{Cite journal

|title=Coupling k Convection-Diffusion and Laplace Equations in an Open-Source CFD Model for Tertiary Current Distribution Calculations

|first1=A. N. |last1=Colli

|first2=J. M. |last2=Bisang

|journal=Journal of the Electrochemical Society

|volume=167

|pages=013513

|date=January 2020

|doi=10.1149/2.0132001JES |hdl=11336/150891 |s2cid=208732876 |hdl-access=free}}

{{Cite journal

|title=The Effect of a Conical Inner Electrode on the Mass-transfer Behavior in a Cylindrical Electrochemical Reactor under Single-Phase and Two-Phase (Gas-Liquid) Swirling Flow

|first1=C. C. |last1=Contigiani

|first2=A. N. |last2=Colli

|first3=O. |last3=González Pérez

|first4=J. M. |last4=Bisang

|journal=Journal of the Electrochemical Society

|volume=167 |issue=8

|pages=083501

|date=April 2020

|doi=10.1149/1945-7111/ab8477 |bibcode=2020JElS..167h3501C |s2cid=219085593 }}

{{Cite journal

|title=The Turbulent Schmidt Number

|first1=D. A. |last1=Donzis

|first2=K. |last2=Aditya

|first3=K. R. |last3=Sreenivasan

|first4=P. K. |last4=Yeung

|journal=Journal of Fluids Engineering

|volume=136|issue=6

|pages=https://doi.org/10.1115/1.4026619

|date=2014

|doi=10.1115/1.4026619 }}

}}

{{Dimensionless numbers in fluid mechanics}}

Category:Dimensionless numbers of fluid mechanics

Category:Dimensionless numbers of thermodynamics

Category:Fluid dynamics