Self-adjoint

{{Short description|Element of algebra where x* equals x}}

In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint (i.e. a = a^*).

Definition

Let \mathcal{A} be a *-algebra. An element a \in \mathcal{A} is called self-adjoint if {{nowrap|a = a^*.{{sfn|Dixmier|1977|p=4}}}}

The set of self-adjoint elements is referred to as {{nowrap|\mathcal{A}_{sa}.}}

A subset \mathcal{B} \subseteq \mathcal{A} that is closed under the involution *, i.e. \mathcal{B} = \mathcal{B}^*, is called {{nowrap|self-adjoint.{{sfn|Dixmier|1977|p=3}}}}

A special case of particular importance is the case where \mathcal{A} is a complete normed *-algebra, that satisfies the C*-identity (\left\| a^*a \right\| = \left\| a \right\|^2 \ \forall a \in \mathcal{A}), which is called a C*-algebra.

Especially in the older literature on *-algebras and C*-algebras, such elements are often called {{nowrap|hermitian.{{sfn|Dixmier|1977|p=4}}}} Because of that the notations \mathcal{A}_h, \mathcal{A}_H or H(\mathcal{A}) for the set of self-adjoint elements are also sometimes used, even in the more recent literature.

Examples

Criteria

Let \mathcal{A} be a *-algebra. Then:

  • Let a \in \mathcal{A}, then a^*a is self-adjoint, since (a^*a)^* = a^*(a^*)^* = a^*a. A similarly calculation yields that aa^* is also {{nowrap|self-adjoint.{{sfn|Palmer|2001|pages=798-800}}}}
  • Let a = a_1 a_2 be the product of two self-adjoint elements {{nowrap|a_1,a_2 \in \mathcal{A}_{sa}.}} Then a is self-adjoint if a_1 and a_2 commutate, since (a_1 a_2)^* = a_2^* a_1^* = a_2 a_1 always {{nowrap|holds.{{sfn|Dixmier|1977|p=4}}}}
  • If \mathcal{A} is a C*-algebra, then a normal element a \in \mathcal{A}_N is self-adjoint if and only if its spectrum is real, i.e. {{nowrap|\sigma(a) \subseteq \R.{{sfn|Kadison|Ringrose|1983|p=271}}}}

Properties

= In *-algebras =

Let \mathcal{A} be a *-algebra. Then:

  • Each element a \in \mathcal{A} can be uniquely decomposed into real and imaginary parts, i.e. there are uniquely determined elements a_1,a_2 \in \mathcal{A}_{sa}, so that a = a_1 + \mathrm{i} a_2 holds. Where a_1 = \frac{1}{2} (a + a^*) and {{nowrap|a_2 = \frac{1}{2 \mathrm{i}} (a - a^*).{{sfn|Dixmier|1977|p=4}}}}
  • The set of self-adjoint elements \mathcal{A}_{sa} is a real linear subspace of {{nowrap|\mathcal{A}.}} From the previous property, it follows that \mathcal{A} is the direct sum of two real linear subspaces, i.e. {{nowrap|\mathcal{A} = \mathcal{A}_{sa} \oplus \mathrm{i} \mathcal{A}_{sa}.{{sfn|Palmer|2001|p=798}}}}
  • If a \in \mathcal{A}_{sa} is self-adjoint, then a is {{nowrap|normal.{{sfn|Dixmier|1977|p=4}}}}
  • The *-algebra \mathcal{A} is called a hermitian *-algebra if every self-adjoint element a \in \mathcal{A}_{sa} has a real spectrum {{nowrap|\sigma(a) \subseteq \R.{{sfn|Palmer|2001|p=1008}}}}

= In C*-algebras =

Let \mathcal{A} be a C*-algebra and a \in \mathcal{A}_{sa}. Then:

  • For the spectrum \left\| a \right\| \in \sigma(a) or -\left\| a \right\| \in \sigma(a) holds, since \sigma(a) is real and r(a) = \left\| a \right\| holds for the spectral radius, because a is {{nowrap|normal.{{sfn|Kadison|Ringrose|1983|p=238}}}}
  • According to the continuous functional calculus, there exist uniquely determined positive elements a_+,a_- \in \mathcal{A}_+, such that a = a_+ - a_- with {{nowrap|a_+ a_- = a_- a_+ = 0.}} For the norm, \left\| a \right\| = \max(\left\|a_+\right\|,\left\|a_-\right\|) holds.{{sfn|Kadison|Ringrose|1983|p=246}} The elements a_+ and a_- are also referred to as the positive and negative parts. In addition, |a| = a_+ + a_- holds for the absolute value defined for every element {{nowrap||a| = (a^* a)^\frac{1}{2}.{{sfn|Dixmier|1977|p=15}}}}
  • For every a \in \mathcal{A}_+ and odd n \in \mathbb{N}, there exists a uniquely determined b \in \mathcal{A}_+ that satisfies b^n = a, i.e. a unique n-th root, as can be shown with the continuous functional {{nowrap|calculus.{{sfn|Blackadar|2006|p=63}}}}

See also

Notes

{{reflist}}

References

  • {{cite book |last=Blackadar|first=Bruce |title=Operator Algebras. Theory of C*-Algebras and von Neumann Algebras |publisher=Springer |location=Berlin/Heidelberg |year=2006 |isbn=3-540-28486-9 |pages=63 }}
  • {{cite book |last=Dixmier |first=Jacques |title=C*-algebras |publisher=North-Holland |location=Amsterdam/New York/Oxford |year=1977 |isbn=0-7204-0762-1 |translator-last=Jellett |translator-first=Francis }} English translation of {{cite book |display-authors=0 |last=Dixmier |first=Jacques |title=Les C*-algèbres et leurs représentations |language=fr |publisher=Gauthier-Villars |year=1969 }}
  • {{cite book |last1=Kadison |first1=Richard V. |last2=Ringrose |first2=John R. |title=Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. |publisher=Academic Press |location=New York/London |year=1983 |isbn=0-12-393301-3}}
  • {{cite book |last=Palmer|first=Theodore W. |title=Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. |publisher=Cambridge university press |year=2001 |isbn=0-521-36638-0 }}

{{SpectralTheory}}

Category:Abstract algebra

Category:C*-algebras